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RICCI DEFORMATION OF THE METRIC
ON COMPLETE NONCOMPACT
RIEMANNIAN MANIFOLDS

WAN-XIONG SHI

1. Main result

Suppose (M, g;;) is an n-dimensional complete Riemannian manifold
with metric
ds? = gidx'dx’ > 0.
It is well known that the curvature tensor Rm = {R;;i;} can be decomposed
into the orthogonal components which have the same symmetries as Rm:

(1) Rm=W+V+U or Rju=Wju+Viu+ Uju,

where W = {W,;,} is the Weyl conformal curvature tensor, and V =
{Viju} and U = {U,jx} denote the traceless Ricci part and the scalar
curvature part respectively.

We know that the Ricci curvature is

Rij = g¥" Ry,
and the scalar curvature is
R=g"R;j=g"g" Ryj.
Under these notations we can write U, V, W as follows:
1
Uijki = mR(gikgﬂ - gilgjk):

2 1 o ] ° °
& Vijkr = ——5 (Rikc&jt = Rugjic — Rjx it + R;i i),

Wiiki = Rijii — Vijki — Wijkis
here Rij = Rij - %g,-j.
If we let
(3) Rm = {R;ju1} = Rijir — Uijir) = (Vijir + Wijiet)»
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then

o o
IRm|? = |Ryjirl? = Wil + Vil
2

: o R=_f  p2
(4) IUUkll n(n—l)R s

o
[Rm|? = |R; x> = IRm|* + |[Ujus|.

Now suppose M is a complete noncompact Riemannian manifold of
dimension n. Fix a point xo € M, and for any x € M let y(xp, x) denote
the distance between x, and x. Let

(5) B(x,y) ={y € M{y(x,y) <7}

be the geodesic ball. Then we can state the main result of this paper as
follows.

Main Theorem. Let M be an n-dimensional complete noncompact Rie-
mannian manifold, n > 3. For any c,c; > 0 and § > 0, there exists a

constant € = €(n,c1,¢2,0) > 0 such that if the curvature of M satisfies:
(A) Vol(B(x,y)) > 1y, ¥xe M, y >0, and

(B) IRm|> < €R% 0 < R < ¢3/y(x0,Xx)** Vx € M,
then the evolution equation ,
{ Z8ij(t) = —2Ri;(1),
8ij(0) = g&ij
has a solution for all time 0 < t < +oo and the metric g;;(t) converges to a
smooth metric g;j(oo0) as time t — +oo such that R;jz(c0) =0 on M.

2. Notation and conventions
The notation we are going to use in this paper is basically the same as
the notation used by Hamilton in [6].
We denote vectors as V', covectors as V;, and mixed tensors as T,f{m etc.
The summation convention will always hold. For the Riemannian metric
8ij, We let i

(1 (87) = (&))"
The Levi-Civita connection is given by the Christoffel symbols

1 0gy 0gy 0gj
k _ Lok i jt_ 98ij
(2) T 38 <6xf toxi T axl )’
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and the Riemannian curvature tensor is
0 oy 0

ox7 i+~ oxI

(4) Riji = RS

We denote the covariant derivatives of a vector ¥/ and a covector V;

respectively by

(3) Rl = Il + L, - T,T%,

) 9 . .

(5) ViV'l = B_X—IV] +F{ka’
9 k

(6) VlV]:a—;VI_FUV;('

This definition extends uniquely to tensors so as to preserve the product
rule and contractions. For the interchange of two covariant derivatives we
have

(7) ViViVi = V;iViVi = 8”R;ji, V.

For any tensors such as {S;;;} and {T};;}, we have the inner product
(8) (Sijuts Tijnsy = 8872 847 8%, 01 Toprs,

and the norm of {7}, } is defined as

9) \Tyjnal® = {Tijuts Tijues)-

We use inj(M) to denote the injectivity radius of M.

3. Evolution equation and the short time existence of the solution

For any n-dimensional Riemannian manifold M with metric

(1) ds? = gdx'dx’ >0,
consider the heat flow equation
(2) 2 8ij=—-2R;;

on M. We want to find the evolution equations for the curvature tensor
and its covariant derivatives; we need these evolution equations in this
paper.

Lemma 3.1. Ifthe metric g;;(t) satisfies the evolution equation (2), then

o
ERijkl = AR;ji; + 2(Bijis — Bijix — Bijk + Bixj1)
~ gPU(RpjkiRgi + RipiyRyj + Rijpi Ry + RijipRy1),
(3) d
57 Ris = ARij + 2Rpiq i R? — 28" RyiRy j,

% =AR+ 2gikgleink, = AR+ 28§,
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where

(4) Bijki = 877 8% Rypigj Ryksts
(5) RPY = gP' gU R;j,

(6) S = |Ryj)* = g% g'' RijRu.

Proof. See Hamilton [6].

If A and B are two tensors, we write 4 *x B for the linear combination of
terms formed by contraction on A4;...;By..; using the g, and write V"4
for the mth covariant derivatives of A with respect to the metric g;;. Then
we have the following lemma.

Lemma 3.2, Ifthe metric g;(t) satisfies the evolution equation (2), then
Jfor any integer m > 0 we have

8 . .
5; V" Rm = A(V"Rm) + Z VRm * V/Rm,
i+j=m
(7) %WMRmP = A|V"Rm|? - 2|v™* Rm]?

+ Y V'Rm* V/Rm * V"Rm.
i+j=m
Proof. This is Theorem 13.2 and Corollary 13.3 in Hamilton [6].
Lemma 3.3. Suppose (M, g;;) is a noncompact complete n-dimensional
Riemannian manifold with sectional curvature 0 < R;j;; < ky. Then the
injectivity radius of M satisfies '

(8) inj(M) > 7/v/ko.

Progf. This is a well-known fact. Actually one can use the arguments
of [2] to prove this lemma. For example, use Lemma 5.6 and Corollary
5.7 in [2].

The following short time existence theorem for the evolution equation
(2) is a special case of the theorem proved in [12].

Theorem 3.4. Suppose (M, g;j(x)) is an n-dimensional complete non-
compact Riemannian manifold with its sectional curvature satisfying 0 <
Rijij < ko. Then there exists a constant Ty = Ty(n, ky) > O depending only
on n and ky such that the evolution equation

9) g5 1) = 2Ry(x,0,  gy(%,0) = 8ij(x)

has a smooth solution g;j(x,t) > 0 on 0 < t < T, and satisfies the
Jollowing estimates: For any integer m > 0, there exist constants
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Cm+sl = Cme1(n, ko) > O depending only on n and ky such that
(10) sup |V Ry (X, )* < €t /1™, 0Lt < Th.
M -

Proof. The sectional curvature of M satisfies 0 < R;j;; < k. By using
formula (1.10) of [2] we have

(11) |Rijkll2 < 100714](3 on M.

Thus from Theorem 1.1 of [12] it follows that the theorem is true.

4. Maximal principle of the heat equation
on noncompact manifolds

In the case where M is a compact Riemannian manifold, the maximal
principle of the heat equation on M is easy to prove, just as Hamilton did
in [6].

In the case where M is a noncompact complete Riemannian manifold,
the maximal principle for the parabolic heat equation on A is much more
complicated and is not always true except if we make some curvature
assumption on M and some growth assumption of the solution near the
infinite of M. The proof of such maximal principles is not so easy; for
details we refer the reader to the papers of D. G. Aronson [1], H. Donnelly
[5], L. Karp and P. Li [9], P. Li and S. T. Yau [10], and M. H. Protter and
H. F. Weinberger [11].

Let (M, g;j(x)) be an n-dimensional complete noncompact Riemannian
manifold with its sectional curvature satisfying

0 < Ryjij < k.
Then from Theorem 3.4 in §3 we can find a metric
ds? = gij(x,t)dx'dx) >0 on M x [0, Tp]
such that
{ Z.8ij(x,t) = —2R;j(x,1),

X EM, OS t S TO’
glj(x,o) = glj(x),

and
sup |V R, i1 (6, )2 < emyt /", 0<t< Ty, m>0.
M

If m=1, we get

(1) IVoRul> <aft, xeM,0<t<Ty,
(2) IVoRju(x ) <o/? VI,  xeM,0<t< Ty
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thus

To
/O IV, Ry (x, )] dt < '/2/ AtiNi=2Toe, xEM,
(3)

Ty
sup IVpRijkl(x, Nldt < 2+/Tpc; < +o00.
xEM JO ;

In this section we make the following assumption.
Assumption A. M is an n-dimensional complete noncompact Rieman-
nian manifold with respect to the metric

ds? = g;j(x,t)dx'dx’ > 0

on C®(M x [0,T]), where 0 < T < +oo is some constant such that

(4) ‘ %g,,-(x, 1) = —2R;(x,1) on M x[0,T};
0 < Ryjij(x,0) < ko, x €M,
IR jrt(x, 1)* <, xeM, 0<t<T,

5) )
[ Vo Riu(n,0ldi < x €M,
0

where 0 < ¢{,¢; < +00 are two constants.
Under Assumption A, we let

(6) k ds? = gij(x,t)dx'dx’ >0, 0<t<T,

and use V or V' to denote the connection of ds?, A or A, the Laplacian
operator of ds?, and ,(x,y) the distance between x and y with respect to
metric ds? for any two points x,y € M.

Lemma 4.1. Under Assumption A, we have
e~Wralgst < dst < eWV™Wilgs}, 0<t<T,
eV iy (x,p) < (X, p) < eV™ily(x,y),  x€EM,yeM.

Thus for each t, 0 <t < T, ds, is equivalent to ds}.
Proof. Since

(7)

|Rijui(x,)]* <er on M x[0, T},
we get
(8) [Rij(x,1)|> < ney on M x [0, T].

Thus from

0
atg,,(x 1) = —2R;i(x,1),
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it follows that

9) |2 8, )| < 2|R;i(x,1)| < 2v/ner;

that is,

(10) ~2y/ncigij(x,t) < £.gij(x, 1) < 2\/nc gij(x, ).
We now have

(11) e~ WVl g;i(x,0) < gij(x, 1) < eV g;i(x,0),
(12) e~ Wraldsl < ds? < e?VPildst.

Using (12) we get
(13) e Vlyy(x,y) < vi(x,p) < eV yp(x, y)
for any x,y € M, and this completes the proof of Lemma 4.1.
In particular, we have
—ZWTg,(x 0) < gi(x; 1) < €>V7 gi(x,0),
TV yo(x,p) < vulx,9) < €TV pg(x, p)

for0<t< Tandx,yeM.
Lemma 4.2. Under Assumption A, for a fixed point xo € M, we can find
a function y(x) € C®°(M) such that
c3{1 + yo(X0, X)} < w(x) < ca{1 + yo(x0, X)},
(15) IVPw(x)* < cs,
V?V?W(X) < ¢s58ij(x,0)

(14)

Jor all x € M, where c3, cs, and cs are some positive constants.
Proof. Let

(16) p(x)=1+7p(x,x), X€EM.

Then at the smooth point of ¢(x) we have

(17) Vel < 1.

If we compare ¢(x) with the distance function on R" with respect to
standard Euclidean metric, then, by using the Hessian comparison theorem
in Riemannian geometry, we know that

(18) Vevee(x) < - forany & € oM, [ = 1,

70 (x()s X )
because by Assumption A

0<R,~j,-j-(x,'0) _<_ko, xeM.
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From (18) it follows that at the smooth point of ¢(x)

(19) VIVl (x) < > gj(x,0, xeM.

0 (X0 X)
The problem is ¢(x) may not be smooth at some points of M.
We choose a cut-off function x(x) € Cg°(R) such that
0<x(x)<1 VxeR,
x(x)=0 ifx¢[-1,2],
(20) x(x)=1 0<x<l,
IX'(x)|<2 ¥xeR,
x"(x)] <8 VxeR,

and set
(21) a(x,y) =x (Z‘M—\/fy—)) Vx,y € M.
0

By Assumption A we have
0<Ri,-i,-(x,0)Sko, xXeM.

Thus we know, from Lemma 3.3, that

(22) inj(M) > n/vVko
with respect to metric ds2, and, from (20) and (21), that
(23) a(x,y) € C®(M x M).
Now we can use the so-called mollifier technique to modify ¢(x). Define
(24) v = [ arypo)dy,  xem.
Then
Y0(x, )
(25) v(x) =/ b4 (————) v(y)dy, xeM.
"\ vk

From (23) we know that y(x) € C*°(M), and from (17), (19), and (20)
we know that

c3{1 + yo(x0,x)} < w(x) £ ca{l + yo(x0,X)},
V9 (x)?<¢s, x€M,
VIV (x) < c5gij(x,0).

Hence the proof of Lemma 4.2 is complete.
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Lemma 4.3. For y(x) € C®(M), which was found in Lemma 4.2, there
exists a constant cs = cs(T) > O such that

(26) ANy <Leg onMx[0,T].

Proof. Forany 0 << T and x € M, we want to compute A,y (x) at
x. Choose a coordinate system such that

27) ———-—6gg§c’,‘c’ O_0 ax,
and let
1 98y 08y O0&j
ke _ ky J? Y J
(28) =3¢ (ax' Yo Tax )
Then, by the definition of covariant derivative, we have
dy(x)
¢ = 2
8%y (x dw(x
@) v = S e G
— oi oy ij k oy
At'//(x) =g j('xa z)Bx"Bxf - g”('xa t)rij(x’ t)g?

Since by (27),
(30) I'(x,0) =0,

we have VIV (x) = 82y(x)/0x'dx/.
From Lemma 4.2 we know that

dy(x) dy(x)
g (x, 0)—-5* 5t oxl S

Gl 02w (x) _
Oxioxi =

which together with (14) 1mphes

Cngj(x 0),

() 0T < ogiix, 08, (x,0) < csne V.

For each ¢, [l" (x,0)=T* ;(x,0)] is a tensor on M. Define

u(x,t) = g™(x,0g’* (x, t)gky(-x ) 8y (%, DITH;(x, 1) — Tf;(x, 0)]
[r‘zp('x3 t) - a ('xa 0)]

Then u(x,t) € C*(M x [0, T)).

(33)
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Since I“{.‘j(x, 0) = 0 at x, we have

(34) u(x, 1) = g g% g, Th; (x, O, 5 (x, 1),
ou(x,t 0 o 508
((9[ ) =2 ag gjﬂgkyrkryﬂ'*‘gl g'* kyrfjriﬂ
(33) .
+ 2g’“g1ﬂgkyl“iﬂar‘fj.
Since
0
atglj_ 2Rij’
we have
(36) o8 =288/ Ry,

and from (28) it follows that

O _ 1 4 ogjy o8\ _ 98ij
o =38 Vil ) *Vil%r )~V \Br

= gky(V;Rij -~ ViRj, — Vj'Riy)a

ij
(37) E1‘{3. = g"(V,R;; — ViR, — VRyy).
Substituting (36) and (37) into (35) gives

du(x,t)

— 1o G i k o
(38) 5 =487 8" Roeg’ g1y TiThp — 28" g/ Ry T T

+ ZgiagjﬂgkyFZﬂgk[(leij - ViRj; — V;Ry).
By (8) we get
(39) %u(x,z) < 6y/AGIITS 2 + 617,51 ViR,

where |I'% |2 = u(x,t). Thus
-f’— r’<<.|2 < 6ymETITS P + 67 |- [V Ryel,

%] < 3y/me|T| + 3|ViRjl,

%(3_3‘/"—6_”]1‘5]) < 3¢V YRy | < 3|ViRyl,
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and therefore

13
o 4. _
=3V, —ll“i-‘,«()c,0)|=/0 5716V 1t
¢ r
< 3/ lV,‘RjkldtS 3/ lViRjkldt
0 0

<3n fOT|VpRijk1|dt,

which together with (5) gives

e~ VK (x, )] — [T%,(x,0)| < 3nc,.
Then by definition (33) we have

T (x,0))=0 on M,

and therefore

T (x, )] < 3ncye3V™! < 3ncye’™Vre,
(40) IT%(x,0)] < 3ncy3TVre,  xeM, 0<t<T.
By (14) and (31) we get

' Oyp(x)dy(x) 2T /7
(41) gll(x,t) axi Bxl SCSe \/TI.

and therefore
(42) [Vig(x))? < cse?TVe, 0<t<T.
From (40) and (42) it follows that

~8(0, 0T (x, ) 9% < nlTk(x, )] 15w ()]

< 3nleyese’ TV

(43)

which together with (32) gives

g (x,1) Oy — g (x, OT%(x, t)aw < csne?TVre 4 3p2c,cse3 TV
T Oxioxi ’ dx
Let ¢g = csne?TV7a 4 3n2¢yc5e5TV, Then from (29) we have
(44) Ay(x)<c, xeM,0<t<T.

Lemma 4.4. Under Assumption A, for any ¢; > O we can find a constant
cg > 0 and a function

8(x,t) € C®(M x [0, T])
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such that the following are true.

(45) 0<B(x,0) <1 V(x,1)€ M x[0,T),
et k s
46) —28  _<O(x,) < +—o—-, XxEM,0<t<T,
(46) I+ po(x0,x) ~ ( )—1+?0(Xo,x)
02
(47) 60<A0—M—C70 on M x[0,T].

at = 6
Proof. From Lemma 4.3 we know that

Ay(x)<c, x€M,0<t<T

Let
(48) E(x, 1) = e {y(x) + cst}, xeM,0<t<T.
Then
g—f = c7e"{y(x) + cot} + cee‘’,
(49) B et 0<i<T.
Since

AE = e " A{w(x) + cst} = e Ay < cge!,
from (49) it follows that
(50) O sat+a onMxT]
By (48) we get
w(x) <Ex, 1) < e Ty(x)+e7T - T,

and therefore, in consequence of (15),

(51)
c3[1 + po(x0,x)] < w(x) < &(x,1)

< €T cq[1 + po(x0, X)) + csTe’”  on M x [0, T,
esll + yo(xo0, X)1 < &(x, 1) < (cae’T + c6Te )1 + yolxo, ¥)]
~ on M x[0,T]. -
Let |
1

(52) 6(x,1) = D

on M x[0,T].
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Then
80 10
3= -me < - pl o]
=—?—2€—%=A0——4V 6P - ci0,
86 _ - 2 )
(53) 37 < Af - —0:|Vp6| —c;60 on M x[0,T).
From (51) we have :
(54) L > 05,02 ‘

c3[1 + yo(x0,x)] ~ (cseT + ceTearT )1+ yo(x0,X)]
In particular,
6(x,1) < ci on M x [0, T].

€3

Let
(55) 8(x,t) = c30(x,t) on M x {0, T].

Then 0 < 8(x,#) < 1on M x{0,T].
From (53) we get

(56) gf < A6 — —|Vp6| —ci8 on M x[0,T],
) C3 |
57 < 0(x,t) € e
61 G ahe Tt < (&0 S Tt
Choose ¢g > 0 such that
Cs+ceT T

Then (45), (46), and (47) are true.

Now we are going to prove the following maximal principle on noncom-
pact manifold M.

Lemma 4.5. Under Assumption A, suppose p(x,t) is a C* function on
M x 10, T such that '

(39? =Ap +Qp,x,t) on M x[0,T],

(58) lp(x, )] < Co < +00 on M x[0,T],
9(x,0) <0 on M,
Qo,x,1) <0 forp>0.
Then we have
(59) p{x,6) <0 on M x[0,T]
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Proof. If this lemma is not true, then we can find some (xg, fy) € M x

[0, T'] such that

(60) (X, ) > 0.

Suppose #(x,t) € C*°(M x [0, T)) is the function obtained in Lemma 4.4,
and define

(61) @(x,8) = 0(x,)p(x,t) on M x[0,T]
Since 0 < 8(x,?) < 1 and |p(x, t)| < cg, we have

(62) |¢(x,2)| <cg on M x[0,T],
(63) @ (X0, to) = B(xo, to) ¢ (X0, to) > 0.
Let
(64) a= sup @(x,1).
MX[0,T]
Then from (62) and (63) it follows that
(65) 0<ac<o,
so that
o C8C9
x,t)| =0(x,t D] € 68(x, 1) € —————,
19(x, 0 = 6(x, )lg(x, )] < 00(x, 1) < 77 s
" C8C9
66 X, )| < —————— on M x[0,T].
(66) 190501 < T (0,71
Let
(67) D = {x € M|yo(x0,x) < cgco/a}.

Then D C M is a compact subset.
If (x,t) ¢ D x [0, T}, then yo(xo, x) > a~'cgcy. From (66) we know that

|§(x,t)| <a for(x,t)¢ D x[0,T).

Since D x [0, 7] is a compact set, we can find a point (x;,#,) € D x [0, T]
such that ¢(x;, ;) = a, so that

(68) @(x1,t1) = sup @(x,t) > 0.
Mx[0,T)
Thus we have
Py
(69) Sen,1) 20,

(70) A@(x1,4) <0

(71) Vg(x1,4)=0
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where (69) comes from the fact that ¢(x,0) = 0(x,0)¢(x,0) < 0. There-
fore we always have ¢; > 0.
From (58) it follows that
00 _ 0 o _gd0 00
TR TNARAA S TR T
o0
=0[Ap + Q(p, x, )] + 05,

a0
= 0Ap + 957+ 00Q(p, x,t)

a0 .
=A(09) — 2V, 0 -Vip — pAO + 95; 0Q(p,x,1t)

L2 2
= A ~ 5V40- Vi(69) + 7|V,

— 9AG + ¢% +600Q(p,x,1),
2
7

00 2
+ (E — Af + EIV]CBI ) Q.

Let (x,t) = (x), t;). Then from (68) we get
§(x1,81) = 0(x1,t1)g(x1,¢) > 0.

7 PLani-

¢ Vkevk¢+0Q(¢sxat)

Since
(73) 6(x1,11) >0,
we have
(74) 9(x1,0) > 0,
and, in consequence of (58),
(75) Q(p, x1,11) < 0.
Let ¢; = 1 in Lemma 4.4. Then
26 <Af - 2|v,<(9|2 -8,
(76) ot 0
06

2 2
57 — A0+ 5IV,0 < 6.

From (73) and (75) it follows that
(77) 0(x1,t1)'Q(¢,x1,t1)S_0,



318 WAN-XIONG SHI

and (74) together with (76) implies

ot
Substituting (70), (71), (77), and (78) into (72), we get

(78) (57 -6+ 51907 ) 9 < ~00 = 91,10,

o, N
S (%11 S —(x1,1) <0,
(19) e
E(Xl,tl) <0.
Since (79) contradicts {69), we have
p(x,1) <0 on M x[0,T].

Theorem 4.6. Under Assumption A, suppoase g(x,t) is a C* function

on M x [0, T such that

o
6? Ap + 10| Vio)* + Qlo, x,£) on M x[0,T1,

(80) p(x,t) <cg < +oo on M x [0, T],
o({x,00 <0 on M,
g(o,x,ty<enp fore>0,
where 0 < €9, €19, €11 < +00 are some constants. Then we have

(81) o{x, ) <0 on M x[0,T].
Proof. Let
(82) w(x, ) = e~ Fileto?™H _ 1] on M x [0,T],

where # > 0 is a constant to be determined later. Then

aw Is)
= — ~Bt = pcwelx, t)
5r = Pu+elge
8w L de
- _— — Bt HCr00{x,t) ¥
— = B+ i€ ¢ —
gr = Awtaeee ar

= —Bw + cpe”Me ™ [Ag + 10| Viel® + Q(g, X, 1)]
= -—ﬁw + er"ﬁt‘Ag":L@"ﬂ‘ 4 Clo.f_ ﬁfeclzﬂ:@Q(w’ X, t)’

dw
8t

i w(x,t) > 0, from (82} it follows that ¢(x, £} > 0. Therefore
(84) e, x, 1) < epelx, t).

(83) = Aw — fw + crpe F e P Q(p, x, 1).
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Since p(x,t) < ¢g < +00, we can find a constant 4 > 0 such that
(85) 9(x,1) < 8[e7PD _ 1] for 0 < p(x,1) < cs,
which together with (84) gives |

Q(p,x,1) < e 8(e7?™0 — 1),

coe #e?Q(g, x, 1) < cioci b e Bl (e? — 1)

(86)
= C1oc119 €’ w < ¢19C110€ % w.
Let
(87) O(w, x,t) = —w + cloe™#1e? Q(p, x, 1).
Then
ow - ‘
(88) 57 = Aw+ Q(w, x,t) on M x [0, T].

If w(x,t) > 0, from (86) we get

O(w, x,t) < [c19€11 0% — Blw.

Choose

(89) B = cr0c110€1°%;
then

(90) Q(w,x,t) <0 for w > 0.

Since ¢(x,0) < 0, from (82) it follows that

(91) w(x,0)<0 on M,
—1<w(x,t)<e" -1 onMx[0,T],

so that

(92) lw(x,0)} < e® on M x[0,T].

Using (88), (90), (21), (92) and Lemma 4.5 we get
w(x,t)<0 onM x [0, 7],
so that, in consequence of (82),
p(x, ) <0 on M x[0,T]

Now we are going to prove another maximal principle that is different
from Theorem 4.6.
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Lemmad.7. Under Assumption A, for any fixed point xo € M and e >0,
we can find constants c(e) > 0 and ¢, > 0 such that for all k > ¢y, there
exists a function 6(x) € C®(M) satisfying the following:

0<0(x)<1 onM,
O(x)=1 Vx €& By(xg, k),
0(x) =0 Vx e M\By(xg,2k),

(93) 1 ce) { 1 \'**
(o) <% () weo
vovo (L) < <& (—I——)HE gii(x,0) VxeQ
PI\O(x)) Tk \8(x) YA ’
where
Bo(x0,k) = {x € M|yo(x0,x) < k},
(94) - Q={xe M|0(x)>0}.
Proof. Suppose p(t) € C*(R) is a function such that
0<p()<1, —00<t<+00,
0< p'(r) <90, —00 < t < 400,
(95) p(t) =0, —co <t <3,
O<p(ry<l, H#H<r<3,
pity=1, B <t<+oo

It is easy to show that such a p(¢) exists. Then we define a function
#(t) € C*[0, 1) as follows:

x=1, o0<1<,

. 1 -5 11
= — —_ <
x(1) 1+exp( t—%)’ 4<t‘8’

(96) (@) =[1-p(0] [1+CXD (—1_1%)]
' 11

+ (f) ! —<t<§
p exp (7 1)2 > 8 2’

i~

Al

. 1 3
X(I)=CXP[—7—:W], 5S1<

It is easy to see that : .
(97) #() € C[0,7),
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from (95) and (96), and that
x(t) =

0<t<li,

1,
(98) 0< 7'ty <@, 0<t<i,
#'0| < &e)r®)',  0<i<d,
where é(¢) > 0 depending only on ¢ > 0.
Let
1 7
n(t) = —, 0<t< -,
7
n(t) =0, 7 St<+oo.

Then 75(t) € C*[0, +00).
For k > 0, let x(1) € C*[0, Zk) as follows:

(100) x(@)=x(t/k), 0<t<ik
Then
20> 1, 0<t<Z—k,
(101) 0< 20 < Wy, 0<i<lk,
o< S, 0<i< ik

]
Choose a cut-off function {(x) € C§°(R) such that
OSC(x)<1 Vx €R,
(x)=0 ifx¢[-1,2],
(102) {(x)=1, 0<x<1,
II'(x)<2 Vx€ER,
I{"(x)| <8 VYx€ER,
and define

(103) w(x) = Jar Co(x,9)/641/Ko)[1 + y0(x0,¥)1dy

Jis C(v0(x0,9)/64v/ko) dy
Then similar to the proof of Lemma 4.2 we know that y(x) € C*°(M),
w(x) > 0, and we can find a constant ¢s > O such that
$70(x0, ) — €5 < w(x) < Fyo(Xo, X) + ¢5,
(104) VW (x)*<cs VxeM,
V?V?w(X) < ¢58i(x,0).

Vx e M.
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Now we define 6(x) as

if0<y(x)<

-M\:

(105) 0(x) = 2(w(x)) ,
0 if w(x) > Zk

Then from 7n(z) € C°[0, +o0) and w(x) € C*(M) it is easy to show that
8(x) € C=(M),
(106) 0<6(x)<1 ¥YxeM.

Let ¢;5 = 40c¢s. Then if k& > ¢;,, for any x € By(xo, k) we get

Yo(x0, x} < K,
w(x) < Lyolxo, x) +¢s < Pk + 55k < 3k.

From (105) and (96) we have, respectively,

0(x) = ;7(_;?5?)—) Vx € Bo(xo, ),
(107) ' 0(x)=1 ¥x € Bo{xp, k).
If x € M\By(xp,2k), then yo{xp,x) > 2k and

w(x) > 8yolxo, x) — c5 > 8k — Lok > k.
Thus
(108) 8(x)=0 Yx € M\Bo(xo,2k).

For Q = {x € M|6(x) > 0}, we have
9() x(w(x)) ¥x €Q,
R vl "1_ =’ YAYT70,,( v} .
V! (555) =X WGV,
From (101) and (104) we get

Vo(e;>>}<

(OIS SONRE

& Sy,

(109)
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1 o
vove (5) = x"(¥)V Vo + ' (y)VIV9y

&e) &(e)

<es 27 X W) 8i(x,0) + o5 - = x (W) 81 (x, 0)
c(e)es 1 ¢
< [522 + 0| gu(v) a0

k [_% c(a)C5J 715 (é—) Hegij(x’o)’

1+¢
(110) VoV9 (0(1 )) < {Cif)) + (e )c5] 1 (G(Ix)) gii(x,0) on Q.
Let
c(e) = max{c(e)./cs, ¢(€)/40 + ¢(e)cs}.
Then the lemma follows from (106), (107), (108), (109), and (110).
Lemma 4.8. For the function 6(x) obtained in Lemma 4.7, we can find

another constant ¢,3 > 0 depending only on ¢ and the constants in Assump-
tion A, such that

(111) A,(ﬁ)s%(%x))m VxeQ, 0<t<T.

Proof. Similar to the proof of Lemma 4.3.

Now we are going to prove the following maximal principle on noncom-
pact manifold M.

Lemma 4.9. Under Assumption A, suppose there exist constants 0 <
£,C14,C15 < +00, and ¢(x,t) € C®(M x [0, TY) such that

20 =89+ 0(0,5,1) on MxIO,T]

(112) 0(x,0)<ci4 onM,

Q(9,x,8) < —c159'** ifp >cpa.
Then we have
(113) o(x,t)<cy on M x[0, T} -

Proof. Fix a point xy € M and suppose this lemma is not true. Then
we can find some (x3,%;) € M x [0, T] such that

(114) @(x2, t2) > C1a.

* Choose k > c;, large enough such that x; € By(xo, k), and let 8(x) €
C® (M) be the function constructed in Lemma 4.7. Then we define

(115) @(x,t) =0(x)p(x,t) onM x][0,T].
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Since x3 € Bo(xo, k), we have 6(x,) = 1, and therefore
(116) F(x2,t2) = @p(x2,12) > C1a.

If (x,t) € [M\Bo(xo,2k)] x [0, T), then 8(x) = 0. Thus from (115) we
know that

(117) #(x,t)=0 on {M\By(xop,2k)} x[0,T].

Since Bo(xo, 2k) % [0, T] is a compact set, where By(xo, 2k) is the closure
of By(xp,2k), from (116) and (117) it follows that there exists (x;,?;) €
By(x9,2k) x [0, T] such that

(118) #(x1,t1) = sup @(x,1) > cia.
Mx[0,T]

Thus we have
(119) Ad(x,1) <0, Vé(x1,t)=0.
Since 0 < 0(x) < 1,

9(x,0) =0(x)p(x,0) < c140(x) < C14.
From (118) it follows that ¢, > 0, so that

o¢
—_ > Q.
(120) 57 x1:11) 20
On the other hand, by (115) we get |
¢ 0 _ 00 _
37 = 5;09) =057 = 08¢ + Qo x, )] = 08¢0 + 0Q(9, x, 1)
=A(09) —2V,0 - V0 — A0 + 6Q(p, X, 1),
¢ . 2 2¢ 5
S5 =A¢ = 5V,0-V,(09) + ZXV,01 - pA8 + 6Q(p, x, 1),
(121) g—(f =A¢—§V,,0~Vp¢+ [%IV,,HIZ—AGJ p+60.
Let (x,t) = (x1,¢). Then from (118) we have
(122) O(x1)e(x1, ) > ci4
Since 0 < 8(x1) <1, p(x1,t) > c14. By (112) we get
(123) Q(p,x1,1) < —c1sp(x1, 1),

2
(51750 - a0) ¢+ 00(p,31,1)

2
< (E-IV,,HIZ —AB) p(x1, 1) — e1s0(x)p(x1, 1) e

2 AG ¢
- [EIV,,QF ;T -6175¢(x1,t1)5] 9(x1,11)6”.
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From (122) it follows that

1 &
€ &
¢(XI,t1) >Cl4 (a(xl)) ’

2
(319502 - 26 9+ 60(p. 21,10

2 A8 1\
< [mlvpmz - — C15CT4 (§> l o(x1,11)6?

= [A (é—) — C15¢E, (%)He] @(x1,)0°%.

By means of Lemma 4.8 we have

2
(517507 - 260) o + 00(p. 31,11
(124)

c 1 1+e’
< (%3 _C150f4) (5) 0%p(x1,t) at (x1,4).

If we choose k large enough such that ¢j3/k — ¢y5¢§, < 0, then

2
(125) (§|Vp9|2 —Ae) 0 +60(p,x1,11) <0 at (xi,1).

From (119), (121), and (125) we know that

Y
%(X},tl) < 0’

which contradicts (120); therefore the lemma is true.

Lemma 4.10. Under Assumption A, suppose there exist constants 0 <
£ < +oo and 0 < c14,C15,C16 < +00, and @(x,t) € C®(M x [0, T]) such
that

%0 —Ap+Qlp.x1) on Mx[0,T],
9(x,0)<ca on M,
ml2
00, x,0) < SV ot for g > e

Then we have
(D(X,t) <cia on M x [0’ T]

Proof. Let o be an odd integer and o > 1 + ¢j¢. Define
(126) wix,t)=@(x,)* on M x[0,T].
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Then

8_'/, = a“‘l_a_z _ a—1
6t '—a¢ 6t _a¢ [A¢+Q(¢’x’ t)]
= Ap” — a(a - 1)p**|Vig|* + ap* ' Q(p, X, ).
Thus
P N

(127) S =4y +0(v,x,1),
where
(128) Oy, x,1) = —a(a — 1)p° 2|V + ap® ' Q(p, X, 1).
From (126) we get
(129) w(x,0)< ¢y, onM.

If '//(xs t) 2 c[114’ then (P(x, t) 2 C14,
4
Q(¢’x’ t) S _;G'IVI¢|2 - c15_¢l+5’

(v, x,1) < —a(e— 1)¢**|Vip) + cisap® ?|V,p|* — aci5p°**
= a(1+ ci16 — )9 ?|Vipl? — cisap !,
Since a > 1 + ¢is, '
(130) O(w,x,1) < —cisoyp'*¥/* for y > cfy.
From (127), (129), (130) and Lemma 4.9 it follows that
w(x,0)<cfy on Mx[0,T].

By (126) we get » ‘
‘p(x,t)<cia on M x[0,T].

Lemma 4.11. Under Assumption A, suppose there exist constants 0 <
£ < +oo and 0 < ¢14,¢15,C16,C17 < +00, and p(x,t) € C®(M x [0, T)) such
that

%_f =Ap +Q(p,x,1) on M x[0,T],
' 9(x,0)<ci4a onM,

c161Vip|
@

2
Q(p,x,t) < + WiV — ci29|wil? — cis@tt for ¢ > cua,

where {y;} is a tensor. Then we have

o(x,t)<ci4 on M x[0,T].
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Proof. The proof follows from the inequality

)
wiVip — cirolwil? < l—chl_V;(lp
and Lemma 4.10.

Theorem 4.12. Under Assumption A, suppose there exist constants 0 <
& < +oo and 0 < cy9,€11,C14, €15, C16, C17 < +00, and the function p(x,t) €
C®(M x [0, T]) such that

20 =Ap+0(p,%,1) on Mx[0,T],

9(x,0) <0 on M,
(131) 0(p,x,1) <colViplP+cnp for0< 9 <,
c
O(p,x,t) < —(/l)glvi(ﬂlz + ;- Vig — cnolwil? — cise'te

Jor ¢ 2 c14,
where {y;} is a tensor. Then we have
(132). o(x,) <0 on M x[0,T).
Proof. From Lemma 4.11 we know that
o(x,t) <c4 on M x[0,T].

Using Theorem 4.6 we thus complete the proof.
Now we are going to use the maximal principle derived above to prove
some properties of curvature on M under the Ricci flow. First we have
Lemma 4.13. Under Assumption A, we have

(133) 0 < R(x,t) < n*J/c, onMx][0,T].
Proof. Using (5) and Lemma 3.1 we get respectively
(134) |R(x,2)| < n*\/e; on M x [0, T],
OR
57 = AR + 28§,
where S = g* g//R;;Ry; > 0. Thus
R
(135) %—tZAR on M x[0,T].

From (5) we have

(136) R(x,0)>0 on M,

and therefore, in consequence of (134), (135), and Theorem 4.6,
(137) R(x,t)>0 on M x[0,T],
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which together with (134) implies
0 < R(x,t) <n?/¢c; on M x[0,T].

Next we are going to show that the Ricci deformation preserves the pos-
itivity of the curvature operator on the complete noncompact Riemannian
manifold M. Hamilton [7] proved this for the case when M is a compact
manifold. In the case when M is a noncompact complete manifold the
proof basically is the same as the compact case, but we need to use some
cut-off function technique, just as we did in Lemma 4.5. For more details,
see Hamilton [7].

We regard the Riemannian curvature tensor Rm = {R;;;} as a symmet-
ric bilinear form on the two-forms A%(M) by letting

(138) Rm(g, ¥) = RyjiidijWii-

We say that the manifold has a positive curvature operator if Rm(¢, ¢) > 0
for all two-forms ¢ # 0; in this case we denote

(139) Rijk1>0 or Rm>0

We say that the manifold has a nonnegative curvature operator if Rm(¢, ¢)
> 0 for all two-forms ¢ and denote it by ,
(140) R;jx; >0 or Rm2>0.

We want to prove
Theorem 4.14.  Under Assumption A, if R;;;(x,0) > 0 on M, then

(141) Riju(x,0)>0 onMx[0,T].
Moreover, if R;ji;(x,0) > 0 on M, then
(142) R;jii(x,t) >0 on M x[0,T].

Proof. Since (142) is an immediate consequence of (141), by using the
local technique, which is exactly the same as the one used in the compact
case, we only need to prove (141).

From Lemma 3.1 we have

7]
ERijkl = AR;jk; + 2(Bjjk; — Bijie + Bikji — Biji)
— (RpiRgjki + RpjRigi + Rpk Rijgr + Ry Rijrg) 874
To simplify these equations we pick an abstract vector bundle V' isomor-
phic to the tangent bundle 7'M, but with a fixed metric /,;, on the fibers.

Choose an isometry u = {u}} between V and TM at the time ¢ = 0, and
let the isometry u evolve by the equation

(143) %u = g R uf.
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Then the pull-back metric
(144) hap = i)

remains constant in time, since it is easy to see that {%hab = 0, and u
remains an isometry between the varying metric g;; on TM and the fixed
metric A, on V. Now we use u to pull back the curvature tensor to a
tensor on V:

(145) Rabea = Rijubufuful.

We can also pull back the Levi-Civita connection I' = {I‘é‘j} on TM to get
a connection I' = {T%.} on V, where the covariant derivative of a section
w = {w?} of V is given locally by
ow? o b

B Tl

We may take the covariant derivative of any tensor of V and TM, in
particular we have

(147) Vil =0, Viha =0,

(146) Vo =

and let the Laplacian
(148) ARgpeq = 87ViVRypca

be the trace of the second covariant derivative. From Hamilton [7] we
know that

0
(149) aRabcd = ARabcd + 2(Babcd - Babdc + Bacbd - Badbc),

where Babcd = Raebecedf-
We regard the two-forms A2 on V as the Lie algebra so(n) of the Lie
group of rotations of V. Choose a local chart on V where 4,; is the

identity, the metric on A? is given by |¢|* = (@, ¢}, where (¢, ¥) = Pup Wap,
and the Lie bracket is given by

(150) (&, ¥]ab = acWbe — WacDpe-

It is easy to check that the trilinear form {[¢, ¥], w} is fully antisymmetric;
choose an orthonormal basis ¢* = {¢%,} for the 2-forms on V, then the
inner product on A%(V),

hag = (%, ¢),

is the identity matrix in the local chart. The Lie bracket is given by

[6%,¢"1= ¢/,
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where the ¢ are the Lie structure constants relative to this basis. Note
that co#” = cgﬂ h?% is fully antisymmetric since

(151) 7 = ([¢°, ¢P1, ¢7).

The tensor Ryp.q on ¥ may be regarded as a symmetric bilinear form M,z
on A%(V), where

(152) Ruped = Mooy ds,.
Then from Hamilton [7] we know that
a .
(153) a—tRabcd = ARgpeq + Rﬁbcd + szbcd’
where
(154) Rgbcd = Rabechdef = 2(Bgapea — Bapac) = Ma}'MYﬁQSZb ¢/cgd’

Rgzbcd = 2(Bacbg — Badbe) = CayncﬂJHMyéMnHQSqubcﬂd,
or equivalently

(155) %Maﬂ =AMyp + MyyM,g + CaynCpsoMys M.
For any symmetric bilinear form 4 = {4,5} on A%(V), if we define
(156) Q(A)ap = AayAyp + CapnCpsoAys Ao

then we get

(157) S M =AM,y + Q(M).p.

For any {4,z}, if Aapww? > 0 for all w = {w*}, we denote
(158) Aup 2 0.

For any {4,4} and {/faﬂ}, if Aup — /fa,; > 0, we denote

(159) Aop > Aup.

For any fixed (x,t) € M x [0, T], we define

(160) P(x, 1) = SUp{8|Map (X, 1) 2 000},

where

_ I, a=4p,
5"”"{0, a# B.

Lemma 4.15. For any (x,t) € M x [0,T], Rijxi(x,t) > 0 if and only if
M,p(x,0) 2 0.
Proof. By the definition of M.
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From the assumption of Theorem 4.14, we have R;jz;(x,0) > 0 on M,
and therefore

(161) M,(x,0)>0 on M.
Thus
(162) 9(x,0)>0 on M.

If we can prove ¢(x,?) > 0 on M x [0, T], then Theorem 4.14 follows from
Lemma 4.15.
From Assumption A it follows that

|Rijki(x, 0> <e; on M x[0,T].
By (143), (144), and (145) we get
(163) IRapea(x, D <& on M x [0,T],

where 0 < ¢; < 4oo is some constant. Thus by the definition of M,z there
exists a constant 0 < ¢;g < +oc such that

(164) —C18008 < Mpyp(x,1) < c18d,5 on M x[0,T].
In particular we have
(165) p(x,t) > —-c3 on M x[0,T].

Lemma 4.16. For any symmetric bilinear form {A,g}, if Aup > 0, then
Q(A)aﬁ >0.

Proof. Just by the definition of Q(A4),s.

From (165) it follows

(166) Maﬂ(x’ Z) > w(x’ l)daﬂ on M x [0’ T],
so that
(167) Aug =M — 93,520 on Mx[0,T].

By Lemma 4.16 we get Q(4),p > 0. Since Q(A4),p actually are the qua-
dratic polynomials of A,g, from (156) and (164) we have

Q(M)ap > —ciglcislol + 9*10ap on M x [0, 7],
and, in consequence of (164) égain,
lo(x,t) <cjs on M x [0, T).
Thus
(168) Q(M),p 2 —2ci9¢18l9|,5 on M x[0, T,
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and therefore
(169) - Q(M),p > 2c19¢1390,5 for ¢ <0,

where 0 < ¢j9 < +00 is some constant.
Now if we can find some (xg,%) € M x [0, T] such that

(170) 9(x0,20) < 0.

Let 8(x,t) € C*(M x [0,T]) be the function constructed in Lemma 4.4,
and consider M,z as follows:

(171) Mop(x,t) = 0(x,t)M,p(x,t) on M x[0,T].
Let

(172) ¢(x,1) = S:é%{eolMaﬂ(x ,1) 2 00045}
Then

(173) @(x,t) = 0(x,)e(x,t) on M x[0,T].
Since 0 < 8(x,t) < 1, from (170) we have

(174) $(x0, fo) = 6(x0, t0)9 (X0, %) < 0.

By (46) and (165) we know that

(175) B(x,1) > —— 188

1 + yo(x0, X)
Thus if yo(x0,x) > —c18¢8/F (X0, t0), then
(176) @(x,1) > @(xo, Lo)-

Since By(xp, —¢13¢8/ @ (X0, %)) % [0, T] is a compact subset of M x [0, T]
and ¢@(x, ¢) is a continuous function, from (176) it follows that there exists
a point (x1,7,) € M x [0, T] with

yo(x0,x1) < —ci3¢8/ @ (X0, to)
such that
(177) (o(xl:tl) = M)l(r[l({T](o(x’ t) <0.
On the other hand, by (172) one can find an index a; such that
(178) M, o (x1,8) = ¢(x1,4),
(179) M, (x,t) > ¢(x1,41) V(x,t) € M x[0,T], Vindex a.
Thus
(180) AM, o (x1,8) 20, VM (x1,4)=0.
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Since p(x,0) > 0, we have ¢(x,0) > 0, and from (177) we get #; > O.
From (179) we have

5 -
(181) EMalal(xl,tl)SO.
On the other hand,
o -~ 0 80
5‘;Maﬂ at(eMaﬂ) aﬂ + GatMaﬂ
80
= 60[AM,5 + Q(M)aﬂ] + 57
=A(OM,p) ~2V,0 -V, M, + 0Q(M),5 + ZfMaﬂ — M,3A0
(182) = AMaﬂ — %VI,G -Vp(OM,p) + 2|V56| M,p +0Q(M),p
o0 :
+ 'a—tMaﬂ — (AG)Maﬂ
. 2 o0 2
=AM,z - evpe v Ma,; + a7 - A6+ = |V,,01 M
+ GQ(M)aﬂ.

Now let (x,t) = (x1,¢,) and a = f = o. Since

@(x1,t1) = 0(x1, t1)p(x, 1) <0,

we have
) - ea,t) <0.

From (169) it follows that
(183) O(M)aa, > 2c18¢190(X1, 11).
But M, o, (x1, 1) = ¢(x1, 1), so by (182) and (183) we get

2‘[‘N[c)za ZAMaa _EV 0-v Maa

at 1] ¢ 0 10y
(184) o0

+ (at — A8 + elV,,Gl + 26136190) ()Cl,tl).
By Lemma 4.4 if we choose ¢; > 2¢3¢19, then
(185) o6 —A6+ = |Vp0|2+2(,‘13C190 < 0.
at )

Since ¢(x;,¢1) < 0, from (180), (184), and (185) it follows that

0

at Qlal(-xlatl)>0
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which contradicts (181). Thus
¢(x,1) 20 on M x[0,T],

and the proof of Theorem 4.14 is complete.

5. Long time existence
Let M be an n-dimensional Riemannian manifold with metric
ds? = g,-jdxidxj >0.

If the curvature satisfies

(1) Rmi? < 61 - o' T s B2
where ¢ > 0,03 > 0,d, =1, 65 = ;, and
@) NS Y
(n=2)(n+1)
then the curvature operator is positive, more precisely, in this case we have
3) Rijrsttijthps = 2s|u,~j|2WE_—ﬁ
for any two-form {u,;}. For the proof of this statement, see G. Huisken
[8].

Now we choose constants 8, < J,/[2n(n—1)] depending only on #, and
suppose the curvature of the manifold considered satisfies

) [Rm” < B.R”.

In this case from (1) and (3) we know that for any {u;;},
R

(5) Rijriuijug; = luij'lzm-

Lemma 5.1. Suppose M is an n-dimensional complete noncompact Rie-
mannian manifold with its curvature satisfying condition (4). Then

2
12 < 2
(6) |lekll > [ﬂn‘*‘n(n_l):lR on M.
Proof. It is easy to show that
° 2
- 2 2
™ Ryl = [Rmf? 4 " s R,

From (4) and (7) we get (6) immediately.
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Theorem 5.2. Suppose M is an n-dimensional complete noncompact
Riemannian manifold with metric g;;(x). If the curvature of M satisfies

(8) Rm® < B,R>, O<R<c,

where 0 < ¢y < +oo is a constant, then the evolution equation

15)
9 Egij(xat) = —-2R;j(x,t), g&;j(x,0)=g;j(x), x€eM,

has a solution for all time 0 < t < +oo.

This long time existence theorem is what we want to prove in this sec-
tion, but before we start the proof, we must prove several lemmas.

Using (8) and Lemma 5.1 we find

(10) Rypa,OF < [+ o5 | & vxe M,

From (5) we get
(11) Rfjk[(x,0)>0 VxeM,
which together with (10) implies

2 1/2
(12) 0 < Ryjij(x,0) < [ﬁn+ m] n’co on M.

Thus by using Theorem 3.4 we know that the evolution equation (9) has
a solution for a short time 0 < ¢ < T, where Ty > 0 depends only on n
and cq, and by using Lemma 3.4 we still have the short time estimate:

(13)  sup|V™R;js(x, O)* < cma1(m,co)/t™, 0<t< Tp, m20.
M

Lemma 5.3. The solution obtained above satisfies Assumption A of §4
on M x [0, To).

Progf. Similarly to the proof of (3) in §4 by using (13).

Now we define 0 < 7 < +oo as follows:

T\ = sup{t|the evolution equation (9) has a solution g;;(x,?)
TeR

on M x [0,7), and for any 0 < T < 1, the solution

(14) gij(x,t) satisfies Assumption A of §4 on M x [0, T] and
(13) holds on M x [0,  To]}.

Then we have |

(15) 0< Ty < T < +oo.

What we need to prove is that T = +oo.
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For 0 < T, < Ty, suppose g;;(x,?) is a solution of the evolution equation
on M x [0,T3), and for any 0 < T < T, the solution g;;(x,?) satisfies
Assumption A of §4 on M x [0, T].

Thus for any T < T,, the maximal principle Theorem 4.6 and Theorem
4.12 are true on M x [0, T], but since T < T, is arbitrary, we know that
Theorem 4.6 and Theorem 4.12 actually hold on M x [0, T3).

Lemma 5.4. We have the following:

(16) Rijki(x,6) >0, R(x,£)>0 onM x[0,T3).

Proof. From (11) we complete the proof immediately by using Theo-
rem 4,14,
Lemma 5.5. Suppose 0 <o < 3 and

17) fo(x,t) = l%{z—n_l!,—z(x, 1) én M x [0, T3).
Then
18 2f=af,+ 29k Vs, - LD Rmp 9 RP
— vs RV, Ry — R VR + =i <P + %|I°<m|zs> :
where

P = 2RRyjiyRipen Ronjni + YRR, 1 Ricimn Ronij — |RM2S.
Proof. This is Lemma 3.2 [8].
Lemma 5.6. If

2

D12 RV
Ref? < 3,(1 - &) "5

then .
P< —%Rlemiz.
Proor. This is Theorem 3.3 [8].
Lemma5.7. |[Rm|?/R%2< B, for0<t< T.
Proof. Let fo(x,t) = (|JRm|?/R?)(x,t). Then from (18) we have

9
a1

4

2 2
(19) fo=Af+ ﬁka Vifo— ﬁmv,,R,.jk, — Rt VoRP? + =5 P

R’
Let

(20) 9(x,£) = R(fo = Bn)-
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Then
Rmf?
1) o) = RO (2 1) — BuR(x, 1),
By (3) and (7) of §3 we get v
do 2 4
(22) 5 = 29— IRV Riju — Riji VR[> + yoohl

+25(fo~ Ba),  0<i<Th.
From (8) it follows that

(23) ' .fb(xs 0) S ﬂn’ X € M’
and that
(24) (x,0) <0, xeM.

Using Lemma 5.4 and formula (1.10) in [2] we get, respectively,

0 < Ryjij(x,t) < R(x,t) onM x[0,T3),
(25) IR (e, P < 200n*R(x,1)> on M x [0, T).

(]
Since |Rm|? < |R;jx/|?, we have

IRm[? < 200n*R? on M x [0, T),
(26) folx,t) £200n* on M x [0, T»),
27)  o(x, 1) < R(x,0) fo(x,1) < 200n*R(x,t) on M x [0, T>).

For any T < T, since Assumption A of §4 is true on M x [0, T'], we can
find a constant ¢;(7T) > 0 such that

(28) IR (X%, 1)> < ei(T) on M x[0,T],

which together with Lemma 5.4 implies that )

(29) 0< R(x,t) < n*\/e(T) on M x [0, T].

From (27) it follows that _

(30)  p(x,t) < 200n8/a(T) on M x [0, T].

If g > 0, from (20) we have [Rm|%/R? > ,. Define -
02=—€"i2 or 0=—°R— a2,
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Then 0 < # <1 and

Rm|?
(31) | g, = Rl g2,

Rm|? Rm|> |Rmf?
¢(xst) (I | —,Bn) - (l R2| _|R2|

_ Rmp? Rm?
> _
R -0)(1+8)> R (1-6)
L T S
Thus
o p(x,1)
(32) (1-6)Rm| < .
VB
Let
Riju = eRz:jkl,
' 1
(33) Uijkr = mR(gikgjl — il8jk)s
Rijk = Uijkr + R, jr = Uijrg + Rijia.
Then
(34) Rjji; = Uijks + Rijs-

From §1 we know that

IR jitl? = |Uijua|* + |Rijaa|®s
[Rijit)* = |Usjua* + 6% Rijual*
Since 0 < 8 < 1, from (28) and (35) we have

(36) IRl < |Rijual* < e1(T).
Define

(35)

;

(37) P=2Rjéuk1lekanjnl+ RRtjklelmn mnij IRUkll S

where
(38) R=g"%g!'Rijyy =R, S=g*g/"RijRy, Ry
Since .

Rijal® = 62| Rijual = puR = Bu R,

_ kB
= 8 Ry
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and 8, < 4,/[2n(n — 1)], from Lemma 5.6 it follows that

o~ 1 +4.%
(39) P< _EszlRijkllz <0
By the definition of P and P,

P- P < ]szkll + I‘lekll IszkI —szkll
which becomes, in consequence of (36),
P — P <20|Rijial - |Rijs — Riju)

= 2¢2|Rijial - |Ryjir — O Ryl

= ZCZIRIjk1|3 1 - ‘le
From (25) and (32) it follows that
(40) P — P <6000c,n®R3 - <R3,

\/ﬂ_

n
which together with (39) implies P < c3R*¢. By using (29) we get
4
(41) FP$C3-4R¢SC4¢ for ¢ > 0.
On the other hand, from (20) we have

ZS 2n?|Rm|?
25(fo ~ ) = 209 < ZLREL,

which together with (25) yields
25(fo — Bn) < 40018 Ry,
By using (29) we get

(42) 28(fo—Bn) < csp if 9 >0,
which together with (41) implies

. 4 ‘
(43) 7P t25(fo~Bu)<csp ifp20.

From (22), (24), (30), (43) and Theorem 4.6 we have
p{x,1) <0 on M x[0,T]
for any T < T5. Thus
p(x,t) <0 on M x[0,73),
and, in consequence of (20),
(44) So(x,8) < B on M x[0,T3).
Hence the proof of Lemma 5.7 is complete.
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Lemma 3.8. We have the inequality
3n—-2

RE> RI2
(45) ViRl > CE 2)|V,R| .
Proof. This is Lemma 4.3 in [8].
From Lemma 5.8 we get
1 (n-2)?
R..12 - =IV.RI2 RI2
1 (n—2)?
RAI2_ZIT.RZS A S T.R(2
'Vszkl ’ anlRl > n(3n _ 2)Ilejkl .
Lemma 5.9, Let .Iozij = R;j — %Rg,-j. Then
(47) S— %RZ =Ry >0,
N "
(48) —a—t- =AS - 2|‘V,‘Rjk‘ + 4Rij-Rk[Rikjls
) 567 (S - %RZ) =A (S - %R2> —2|ViRy|* + %IVZRP
(49

+ 4R,‘ij[R,'kj[.
Proof. This is Lemma 4.2 in [8].
Lemma 5.10. We have the inequality

0 12 122 _ (n—2) 2

- - — < i SR A SN | v

(50) ot (S nR ) ‘A(S nR ) nn—1)(n+2) IViR|
+ C(")lRijkIP-

Proof. This is a direct corollary of Lemmas 5.8 and 5.9.

Lemma 5.11. For y > 0 we have

(51) %W,-RP =A|ViR[> - 2|V,V;R]*+4V,R - VS,
O (1Y _ (1Y y0+1) 0 pp 20
(52) 31 (ﬁ) =A (ﬁ) = g ViR~ S,
8 (IViRF\ _ , (IV.iRPY |ViRJ?
5 (" )—A( rR )RV VE TR
NIViRY 2 O ? o o12
(53) —y (1 - E) R~ gl ViVIR = 3 ViR ViR
278 5, 4
- WIV,Rl + —ﬁV,R -V;S,

where S = gikgf’Rink,.
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Proof. From Lemma 3.1 we have

OR _AR+2s.
at
Thus
d dR ;
5; ViR =Y (m) = V,[AR + 25]
= V;(AR) +2V;S = A(V;R) — Ry VR +2V;S,
(54) %]V,-R]z =A|V;R|* - 2|V,V;R|*+4V,R - VS,

8 (1 y OR
2 (ﬁ) =l X = L AR+ 25)

1 (y+1) 2 2y
A(Ry) T |ViR| ‘Rms'

The third and fourth equations of (54) are (51) and (52) respectlvely
Now, using (51) and (52), we get

V;R|? V.R|? 1 Py +1
7 (") =8 (") - zvp( ) - OoviRe - 2

- }zz—’y’%w,-mz = |ViV;R[ + 4 ViR - ViS.

Since
4?

1 2 _
~2v, (R) -V,|ViR]? =

V.R|? 2

IViR*Y _ 2y
RY T Rv+l

%ka Y% ( ViR-V4R-V,V,R - |v R[*,

R Rr+2
we have
0 I V iRlz | % iR|‘2 Y , | v iR|2
_t( . =A — + ViR -V, —_

2y
Ry+1

—*_V,R- ViR -V, V,R— y;v,-ij|2

278 4
RJ;+1 ViR + ViR - V.S,

which actually is {53).
Lemma 5.12. If we define

pI2
w=RE 4 (5- L),
R n
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then
381;) < Aw + Ilzka ka—ﬁw +-8—Rw
(55) ¢
é(n 1 5
% (S _ ZRZ) + &)\ Ry,

where é(n) > 0 is a constant depending only on n.
Proof. We have

1 1 1 2
EV,{R Vi (S - ;RZ) = R;VkR VS — ;|ka|2.

Thus from (50) it follows that

0 (¢_Llp RS ARRE _1p
81 (S R)SA(S nR)+RVkR Vk(S nR)
1 2 )
(56) ~ 5 ViR ViS + 2 |ViR|

(n—2)°

N = |v.RI2 o3
n(n — l)(n+2)|VIRI +c(n)|lek1| .

Now, letting y = 1 and using (53) we get

8 (IViREY _ s (ViR |V:iR}?
5?(R -A(R +RVRV 5

2 ' 1

2

ViViR— ==V,R-V,R

4
|ViR|* — 3R

2R3
F|V,~R|2 + EV,-R - VS,

& (|ViR]? [ViR]? [ViR[?
E( 1 )sA( R 4 Lvir-v, (VR

(57) |
- Rl R.U.
sz ViRl +RV,R V;S.
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By means of (56) and (57) we have

ow ' 1 1 4
a1 <Aw + EVkR -Viw ~ W,V,RI

8
+ —|VkR|2 + 46'(”)|Rijk1|3,

dw 1 R ?
<Aw+ ViR Viw = 50 [w 4(5— —R2>]

at R
2
+ %R - 3—R <S - ;Rz) + 4c(n)|Rijril?,
ow 1 1 8
37 <Aw+RVkR ka—ﬁw + Rw
é(n 1 5
L (s- ;RZ) + EmIRsjeal
Lemma 5.13, For any T < T, there exists a constant ¢ = ¢(T) > 0
such that
|V; RI2 ¢
- <t<T.
R t 0<t<T
Proof. Let

P2
w=|—vﬂ'+4(S—lR2).
R n

Then from Lemma 5.12 we have

c’)w 1 1
(58) o 1
+ T <S - ;RZ) + &(n)’RijklP-

Since 5
2 _ 2, 2
[Rm|? = [Rm + e

from Lemma 5.7 it follows that
1 2 1 o 5 2
— = — - < —_—c
sRmf” = 3 Rmf"+ Sy < Bt sy

1 L al
(59) ﬁlRijkIIZSBn'F;l(n—_-ﬁ on0<t< T

If 0 <t < T < T, then by (59) we get

&n 1.,\> _ én) < &

= ¢&(n)R?,
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where &(n) > 0 depends only on » and f,. We still have
&(m)|R;jui® < é(n)R>.

Thus by the above two equations (58) is reduced to

(60) — <Aw+;VkR ka_zlﬁw +§Rw+c3R3 0<t<T,
which together with (29) implies
(61) 66_1;]<Aw+llzka ka—ﬁw + W + ¢4, 0<t<T,

where 0 < ¢;,¢4 < +o00 are constants depending on 7. Let

F(x,t)=tw(x,t)=1 ['V—}gj—z— +4 (S - %Rzﬂ .

Then
oOF 1 1 ., F
< — . P -
o7 SAF + 5ViR-ViF = o F2 4 ooF + et +
1 1 24 1+ T
< — . _— .
< AF + RVkR Vi F 4tRF F +c4T

From (47) it follows that

[VkR]> _ 1 2 F
—_— <
a7 A R IR

Finally we have

oF |V R|? 1
9L < AF V,F - -
o7 SAF T RVkR iy e vy
+ 1+tTczF+c4T, 0<t<T.
Let ¢cs =1+ Tcp and ¢g = ¢4 7. Then
OF 1 IV R|?
<
S SAF + ViR Vi F - Aol F
F CGIR F
<t<T.
IR<5R+ F 8), 0<t<T

By using (29) again we get
¢csR<¢;, cstR<cg on0<t<T.

Thus

OF 1 |V R|?
— < — . —
o7 SOF + 2ViR-ViF
F g F
i —_—— — <t <T.
+IR(C7+F ) 0<1<T

(62)
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By definition we know that
(63) F(x,00=0 on M.
Then from (62), (63) and Lemma 4.11 it follows that
(64) F(x,t) <c, 0<t<T,
where ¢ > 0 depends on T. Thus we have
ViR _ ¢

R —°r

Lemma 5.14. We can find 0 > 0 and c(o) > 0 such that

1
R2—o

0<t<T.

Rmj* <c(g), 0<t<Th.

Proof. Let f;(x,t) |Rm|2/R2 7. Then Lemma 5.5 implies that

6fa
ot

1-o0)
<o+ 29 R v, g, - LD R,k
4

R3 [
From Lemmas 5.6 and 5.7 it follows that

(6% (P+ Lotkmps).

(66) P< —%Rzlloimlz, 0<t< T
o 1
S < %RZ +|Rij|* < (; + c(n)) R}, 0<t< T,

and therefore

4 o2 5
R=s <P+ flRm[ S)

< 7 [—%Rﬂﬁmﬁ + 2 (5 +etm) R
4 1
< [—2— +c(n)o ]
(67) R_4—( IRmIZS) s Rm? [—2i+c<n> ]

0<t< T

Now if we choose ¢ such that

(68) 0<o< —r,
2nc(n)
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then
69 2 (P+2Rmp2S) <0, 0<t<T
(69) 7= \ P+ 7Rm|*S ) <0, <t<D.
Substituting (69) into (65) gives
a l1-0 g(l—o
fa <Afs + A R )ka Vifo - ’(-Rz—)|ViR|2ﬁu
or
R
(10) % <afy+ VP4l -o(1-)fURE,  0<i<Tn
Since

o 12
fo(6,0) = R (x,0) = R7(x, 0)fo(x,0) < o R7(x,0),

from (8) it follows that
(71) So(x,0) < Bnc§ on M,
Rm|?
fotx, 1) = R (e, 1) = R7 (e, 1)fo(x, ).
By using (44) we find

(72) So(x,t) < BuR%(x,t) on M x[0,T].
For any 7T < T, we use (29) and (72) to get

(73) fo(x,8) € Ban®c)(T)°? on M x [0, T1.
Since o satisfies (68) and c(n) = L + ¢(n) > 1,

(74) 0<o<i

Therefore

(75) [1—o(l-0)f] 'VR| <0 iff, > ——t

o(l-0)
From (70), (71), (73), (75) and Theorem 4.6 we know that
1 1 |
< g
fo(x,t) < max [,B,,co, o025 a)] on M x [0, T].
Since T < T, is arbitrary, we get

(76) fo(x,1) < max {Bncg, 0<t<D.

e
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From Lemma 5.14 it follows that if ¢ satisfies (68), then

1 1
(77) _RE (S - ;Rz) < nZC(U), 0 i< T2,
which holds since § — 1 R? = |1°2ij|2 < n2|1°2,-jk,|2.
Lemma 5.15. We have the inequalities:

(78) IozinklRikjl <R (S - %Rz) , 0<t<T,
)2
9 (s-Lr)<af(s- lRZ) - Mwagkﬁ
(79) ot n n n(3n - 2)

+4R<S—-'I;R2), 0<t< T,

8 (IViR*\ _ , (IV.R] 2 v, _ RI2
5 ( =) =A ")~ z5IRViViR-ViR-V,R|
(80) 4 28
+ g ViR VS - ﬁ|v,-R|2.

Proof. From Lemma 5.7 one can check directly that
° 1
R;jRyRixji <R (S - ZR2> ,

or one can see [8, p. 60].

Now (79) follows directly from (46), (49), and (78); (80) follows from
(53).

We want to prove the following important lemma:

Lemma 5.16. For any n > 0, we can find a constant c(n) > 0 depending
only on n, B,, co, and 1, s‘uch that

(81) [V:R|> < 1R3>+ (), n<t< T

Proof. Since
4 8
zViR ViS = ZViR- RyViRy,
we have
4

2 285
Rz ViR ViS < ﬁm,-kmv,-RP +8|ViR|* = F|v,-R|2 + 8|ViRj|%,

which reduces (80) to

8 (IViR]? [ViR}? P12
(82) 5( R )sA( = ) T 8IViR .
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From Lemma 5.14 it follows that if 0 < § < 1/[2ncf(\nJ)], then we can find
a constant ¢; = ¢1(8x,co,d) > 0 such that

(83) S — ;ll-R2 <R, 0<t<T

(actually this comes from (77)). By (79) we get

s B (-7 sa(s-7#) - %n_')‘v Ryl

+4c,R?, 0<t< T
Since 48 = AR +2S, S - LR? > 0, we have

OR | 2 2.
3 OR
Bt 2R6_ =2RAR + 4RS,

= AR? - 2|V;R[* + 4RS,

and therefore

OR?
ot

From (82), (84), and (86) it follows that for any # > 0

8 [IViR]? 1, 2
EY, [ R + C3 S - ;R ﬂR
A

(86) > AR? - 2|V,R> + %R?

|ViR? 1, 2 35 2
(87) o S — ZR — nR?| +4cic3R*% 4+ 21| ViR)
2(n —2)? 4
o [o- e Rt - o 0si<n

If we choose ¢; such that

2(n—2)? dn(n - 1)(n +2)

- C3 S - ’

n(3n—2) 3n-2

then from Lemma 5.8 we have
2(n—2)? . 2 dnn-1)(n+2) o )
[8 m%] IViRjk|" < — 32 IViR j|
< -24|V:R)%,

2(n —2)? - -, :
[8 n(3n —2) c3] IViRjk|” + 20|V R|* <0,
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and therefore, in consequence of (87),

8 [|ViR]? 1, )
55 [T +c3|S ;R — 1']R

88 ViR|? 1 s 4
(88) SA["—‘IR'l"l‘C}(S—;Rz)—ﬂRZ]+4Clc3R3 J_ZnR3’
0<t< T
Let VR
_ IV 1 _ap2

F = R +c3 (S—;R) nR*— CR.
Then from (85) and (88) we get

%’; < AF +4c;c3R*? 4-7;R3—%CR2,
(89) %E < AF + [40103R1 =0 _ i nR — —C] R?, 0<t<Ts

If we choose C large enough, then
4cic3RVO — %nR - %C <0 forall R>0,

where C depends only on f,,, ¢, d, 1, ¢1, and ¢3. We have
(90) —aa—};<AF 0<t< s

By the definition of F,
l v i-Rlz 1 2
< —_ L —_—
F R + C3 S R%).

349

Suppose Ty is the constant in Lemma 5.3. Then from Lemma 5.13 we

know that
IViR> _ c¢s(co, ) 1
< < ot
(91) x-S 0L,
which implies '
|V:R|? 1
< < 2
(92) ® - Scm,  msts< 5 To,
and from Theorem 3.4 it follows that
OSS—%RZSQ(CO,n), OStS%To.
Thus
(93) F(x,0) < s, o), N<1< Ty xEM.

2
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For any T < T3, by (28) and Lemma 5.13 we get
(94)

RI2
F(x,t) < m:—l—kq (S—%Rz) < cy(n, Bu,co,n, T) onn<t<T.

From (90), (93), (94) and Theorem 4.6 we have
F(X,Z) SCS(n:ﬂn:CO: ’7): USZS T.

Since T < T3 is arbitrary, we have

(95) F(x,t) < c, n<t<Ty,

P12
I_V_}_ii +c; (S— -:;Rz) —nR*—CR<c(n), n<t<T,
IV:R? <nR*+ CR*+cg(m)R, n<t<T.
If we replace # by 17, then
IViR? < inR*+ CR2+ cs(m)R, n<t<T,
and therefore
IViRF<nR*+C(n), n<t<T.

Note. C(7n) > 0in (81) depends only on #n, B,, ¢, 11,.and is independent
of Tz.

Lemma 5.17. There exists a constant C > 0 depending only on n, f,,
and cq such that

(96) 0<R(x,)<C on0<t<T.

Proof. From Lemma 5.4 and (13) we know respectively that R(x,¢) > 0
on 0 <t < T, and that

(97) R(x,t) < ci(n,c) on0<t< 1T,

For any n > 0, by using Lemma 5.16 we can find a constant C(n) > 0 such
that
IViR| < 3n°RP+C(n), n<t<Th.

If Rpax — oc as t — T3, we can find 6 such that n < 8 < T, and

(98) C(n) < in*Rilm, while t = 6.
Thus
(99) |ViR| < n*Rya; att=0.

Fix a point x € M such that
R(x,0) > (1 — n)Max,en R(y, 0).
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Then on any geodesic out of x of length at most S = %R,‘,{fx we have
R > (1 — 21)Rpax, and from Lemma 5.7 we know that there exists a fixed
& > 0 such that R;; > goRg;;. Thus on any geodesic out of x of length at
most S = %R,‘,{fx we have

R;i; > eo(1 — 2n)Rinax &ij-
If n > 0 is small enough, it follows that every geodesic from x of length

S = %R},{fx has a conjugate point by the well-known theorem of Myers,
which can be found in [Theorem 1.26, Cheeger and Ebin [2]]. Thus

(100) ve(x,y) < nRr',{ZX Vy € M.

Since 8 < T», Assumption A of §4 holds on M %[0, §]. By using Lemma 4.1
we know that ds? is equivalent to ds?. Since M is a complete noncompact
manifold with respect to ds3, M is a complete noncompact manifold with
respect to ds3; therefore (100) is impossible. This means that (98) cannot
be true for any 6 € [, T3), so that

1
C(n)> 50" Refax, 1< 1< T,

2C(m\ 23
Rpax < ( ”(2’7)) , n<t<T.

Thus we can find C () > 0 such that

(101) R(x,n)<C(), n<t<T.

Fix 0 < n < 1T,. Then (97) and (101) imply the lemma.

Proof of Theorem 5.2. Now we are going to prove the long time exis-
tence theorem. We need to prove that 77 = +oo.

Suppose 1] < +oo, from (15) we get

(102) 0< Ty <T) < +o0.
By the definition of 77 in (14), for any £ > 0 we can find a constant
(103) T)-e<h<T

and a solution g;;(x, ¢) of the evolution equation on M x [0, T>) such that
for any T < T>, the solution g;;(x,?) satisfies Assumption A of §4 on
M % [0, T}, and (13) holds on M x [0,57p}. Thus from Lemmas 5.4 and
5.17 we know that

(104)

R;; t 0
{ (X 1) > on M x [0, T»).

0<R(x,0)<C
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By (59) and (104) we get

2
(105) [Rijuil* < [ﬂn + o

(n-1)
From (104) and (105) it follows that

} C? on M x[0,T5).

(106) 0 < Rjjij(x,) < [ﬂ,, + ;1—(’1—2_——1—)] v C on M x [0,T3).
Now we consider the evolution equation
(107)  Sayn0)=-2R(n0, (%0 = (%, Ti —e).
Since T} — & < T3, from (106) we have
2 1/2
(108) 0 < Ryjij(x,T1 —¢) < [/3,, + ;1-(71_—1)-] C,

where C is independent of &.

From Theorem 3.4 we know that (107) has a solution §;;(x,?) on 0 <
t<d,d8=24(n, By c, C) depending only on n, B,, ¢y, and C; in particular,
d is independent of &. By Theorem 3.4 we still have

(109)  sup |V R;jni(x%, ) < it /1™, 0<t1<6,x€EM, m>0.
M

Define

&i(x, 1) = gij(x,1), 0<t<T -e¢,
&i(x,t) = &ij(x,t — Ty +¢&), T —e<t<Ty—¢e+4d.
Then gi"j(x, )>0on M x[0,T) —¢+ 4], and

(110)

a . .
(111) 58560 = —2Rj(x,1),  0<t<Ti-e+9,

8ij(x,0) = gj(x) on M.
By the regularity theorem of parabolic equation we know that
gli(x,)e C* on M x[0,T; — & +J].
Thus g,.;.(x, t) is a solution of evolution equation (9) on M %[0, T} —e+J],
and :
(112) &li(x,t) = gij(x, 1), 0<t<T —e
Since & > 0 depends only on n, 8,,co and C, with C depending only on

n, fu and co, thus J > 0 depends only on n, , and ¢y. If we choose ¢ > 0
small enough such that

. [0 To
(113) O<s§m1n{§,—2—},
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then from (15), (112), and (113) we have
(114) g(x,t) = gij(x,t), 0<t<iTy.

Since g;;(x, t) satisfies (13) on M x [0, %To], 8;(x,t) also satisfies (13) on
M x [0, 1To).

Because T —¢ < T3, by the definition of g;;(x, ) and (112) we know that
both g;i(x, ) and 85(x,1) satisfy Assumption A of §4 on M x [0, T} — &].
Therefore we get the following:

0<R};j(x,0)< ko, x€EM,

(115) IR}, P <¢f,  xeM,0<t<T —¢
T]"“E

/O VR (o 0ldE < ¢, x €M,

From (109) it follows that
IR} (X, )P <& onTi—e<t<Ti—¢+34,

(116) L

IVoR (X, 0)* <&/t —Th +¢), Ti—-e<t<Tj—¢e+d.
Thus

Ty—¢e+é T)—¢&+d 6.21/2
117 / VR (x, ¢ dtﬁ/ —=——dt=c3< +x.
( ) Ti—s l 14 Ukl( )l Ti—s m 3

By (115), (116), and (117) we get
0 < R};;:(x,0) < ko, X EM,

ijij

(118) |R} (%, )|* < max{c}, &}, XEM0<t<T —¢+3,

T)—¢&+d g
/ VR (6, Dl dt < ¢ +c5 Vx e M.
0

Therefore &5 (x,1) satisfies Assumption A of §4 on M x [0,T; — € + J]
and satisfies (13) on M x [0,1Tp]. Thus from (14) and (113) we know
respectively that 7 > T — ¢ + J, and that T} > T +J/2 > T;. Since this
is impossible, 7| = +oc and we can find a solution of evolution equation
(9) on M x [0, +oc). Hence the proof of Theorem 5.2 is complete.

Corollary 5.18. Suppose g;j(x,t) > 0 is the metric constructed in Theo-
rem 5.2 on M x [0, +o00). We still have

Rijii(x,t) > 0,

(119) O0<R(x,1)<C, 0<t<+o0,

|§m|2 S ﬂnRZs

(120) SUp|V™ Ry (x, > < emit /1™, 0< (< iTy, xE€M, m>0,
M
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where C > 0 and ¢,ny > 0 are constants depending only on n, 8, and c.
Moreover, for any 0 < T < +oo, gij(x,t) satisfies Assumption A of §4 on
M x[0,T].

Proof. We can prove this corollary by using Lemmas 5.4, 5.7, and 5.17,
and (112) directly.

6. Controlling the scalar curvature

We have shown in the last section that the scalar curvature of M is
positive and bounded from above for all time 0 < ¢ < +oc. In this section
we want to show that the scalar curvature R actually tends to zero as time
t — +oc.

Suppose M is an n-dimensional complete noncompact Riemannian
manifold with metric g;;(x) > 0. Then the curvature of M satisfies the
following condition:

(1) Rm® < BR?, 0<R<q,
where £ and ¢ are constants and 0 < f < J,/2n(n —1).
Now consider the evolution equation on M
9
a—tgij(x:t) = —2Ry;(x, 1),
g,-j(x, 0) = gij(x), xeM.
From Theorem 5.2 we can find a solution of this evolution equation for

all time 0 < ¢ < +o00 and the solution satisfies the properties mentioned in
Corollary 5.18. Thus we can find a constant C > 0 such that

(2)

3) Rmp> < BR?, 0<R(x,0)<C,
forall 0 < ¢ < +oo. ‘
Let 0 < ¢ < 1 and f,(x,7) = (JRm[?/R?>°)(x, ). Then from Lemma
5.5 it follows that
1-a) a(l-a)

af, 2
g = Af;? -+ R 'R4-U

ot
|RV R, ikt — Rijklvalz +

ViR -Vify — |Rm|?|V;R}?
(4) )

T R

ar (P + %|1°zm|23) .
From Corollary 5.18 we have

(5) R;j >0, 0<t< +oo,

and therefore

(6) “R’<S<R)® 0<t<+oo.
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y (3) and Lemma 5.6 we get
1 o
N P< —ﬂ,lesz’ 0<t<+o0,

which implies

4
R3a

4
R3~o

2R? 1\ .8 1
RT;(U—E)lle =2(0’—E)R‘f¢‘;.
Substituting the above equation into (4) gives

229,V f-2 (% )Rfa

(P + —;Rm|2S) (—%ﬁmﬁﬂ + -;-|1°{m|2R2)

® Yo <ans IV.RP

o(1-0)f;.

Lemma 6.1. There exists a constant ¢, > 0 depending only on ¢y, n, and
o such that for 0 < g < 1/(2n) we have

Rm? _ _fe,
R2=o = (t+ 1)’

9

0<t < +oo.

Proof. Because 0 < ¢ < 1/(2n), from (8) we have

a fs 2(l-0o 1
(10 S < afo+ X=DviR V.1, - 1rs
Let
1t \!
=(—+— <
o(1) (CO + na) , 0<t< +o0,
()= Bo(t)°, 0<t< +oo.
Then
dy 5100 1 /1 t\?
_(W - ﬂ0'¢(t) at - ﬂd’(ﬂ(l) [ no (Co + na)
1 _ 1
= —;;ﬂfﬂ(t)” Lp(t)? = —;ﬂ(v(t)”“,
y 1
= < .
(1 T, pad 0<t<+oo
Thus
oy 2(1 - a) l
(12) a—t—AV/+ R ViR -Viy A
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From (8), (12) and 0 < ¢ < 1/(2n) it follows that

2 o= <89+ L DR sy - )

1 1 VR
+—py — ~Rf;—o(l - o) " 'fa

Let F(x,t) = fy(x,t) — w(t) and

2(1 - 1 1
0(Fx,0) = 22 )ka-vkm—er;w—;Rﬁ
V R
Then
OF
(13) 57 < AF + Q(F,x,t), 0<t< +o0.

y
Since |Rm|? < BR? on 0 < t < +o00, wWe have

folx,0) = Rz _|Rm? < BR°,
(14) fo(x,8) < BR%(x,1), 0<t < +oo.

In particular,
fo(x,0) < BR°(x,0) < Bcg

by (1). Since ¢(0) = ¢y,

(15) | F(x,0) = fo(x,0) ~ (0) < Bc§ — Bp(0)’ <0, xeM.
’ Therefore if F(x,t) > 0, then

0 < F(x,0) = fo(x,8) — w(t) < BR(x,1) - Bo(1)°,

p(t) < R(x,1),

1 1
9V RV F + —~Ry - ~RF;

o(F, %0 < 22

ViR
( )l k lf;r
sz(lR )ka ka—lRF— (1—¢7)|V’<R|
ViR
(1_0.)| k | v
2(1 —a) leRl
< R ViR -V F —a(l —0) R
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Thus if F > 0, we get

|ViF|?
(16) Q(F’x’t)Sb(T—?)—f'

Suppose m > 3 is an odd integer, and define H(x,?¢) = F(x,)”. Then
from (15) it follows that
an H(x,0)<0.
If H(x,t) > 0, then F(x,t) > 0, and we have

OH m_1 . OF -

- = . < m—1

57 F m—— < mF" [AF + Q(F, x,1)]

=AH —m(m — )F" YV, F|*> + mF™ 'Q(F,x,1t)

< _ _ m=2 2, Mmoo 2
< AH - m(m — ) F" 4|V F| +a(1—a)F‘ |V Fl°.
If m>1+1/[o(]l —g)], then
(18) %}?SAH for H > 0.

From (3) and (14) we know that
F(x,t) < fo(x,t) < BR%(x,t) < Bc°, 0<1t< +oo.
Thus
(19) H(x,t) < f7mc™, 0<1t < +oo.
By (17), (18), (19) and Lemma 4.5 we get
H(x,t) <0, 0<t < +o0;

thus
F(x,1) L0, 0<1t< oo,
fox,t) L p(t), 0<t<+oo,
1 t\7°
< — 4 < .
(20) pen<p(zas) . 0st<twm
Since .
(_1_+L SM@’_G_), OSI<+OO;
g ho (t+ 1)
we have
[Rm|2 Bey
. < L2 <
(21 RI=0 (x’t)“(t+1)f” 0<t< +oo,

which completes the proof of Lemma 6.1.
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Now we want to estimate the gradient of the scalar curvature. From
Lemma 5.11 we have
(22)

8 (IViRP?\ _ . [IViR}? [ViR[?
(9—[( R =A R +RVkR Vi R

IViR* 2 Y o pi2
—y(l——) - g IViViR= 3 ViR VR

2 Ry+2
2 4
- —Ig%W[Rlz + ﬁV,-R VS, 0<t< +o0.
Let 1 <y < 2. Then
4 8 :
ﬁV,R . V,S = EV;R . RjkviRjk
2 16
< R—y;—,leklzlv'Rlz + F«,‘jlviRjkP
16
R?+1 Tt | ViRE + Rr—T1 =1 ViRil’
2yS 16
= R]H—l |V R|2 Ry_l |ViRjk|29
L.e.,
4
(23) HViR-ViS- 2’/’i|VR|2_Ry 1|VRjk| ,  0<t<+oo.

Substituting (23) into (22) yields

8 (IV.R} |ViR[? Y |ViRJ?
— (XN ) < 1Y iR s . Vel
az( ® ) SA TR ) TRVR Vil TR

(24) |V R[ 16 2
—y(l 2) ozt Rt ViRl
0<t< +o0o.

From (79) we get

(25) g <S B %Rz) =4 <S - lRZ) - ;128——2‘)—)IV Ry’

Since 9R/8t = AR + 28,

Q_Rl-—y — ARl—y y(y )lv RI2

2(1-9p)S
ot Rv+1 )
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Therefore

b o)

<A|R"™Y (S - %RZ)] —2ViR'77. v, (S— %R2>

(26) 20— 2) i

_ 1-7v.R.. |12 -7 (S~ —R?
nGn—R ViRl +4R (S nt )
y(y - 1) (S _ %Rz) wiRrp + 2=V (S - lR2> .

Rr+1 Ry n

Let H = R'"7(S — 1R?). Then

_ 1 1 (1-7)
1-y 2 _ _R?
ViH =R 7'V, (S—nR>+(S nR) G ViR,

1 12)_ 1 (r-1 152
ﬁvk (S_ER)_ﬁka_'- R+ S—-’;R ViR,

—2ViR77.V, (S - %RZ) = WV,(R VieH

2(y - 1) 1, 2
+ R S— HR IViR|,

—2ViR77 .V, (S - %RZ)

-2
= %ka-kaJr yR VRV, H

2(y =1y 12 2
+ TR S - HR |ViR|
(r-2)

=Yv.R. v=4
= RVkR ViH + R ViR

(27) - [R"Vvk (S - %RZ) + (S - %RZ) (—%Y—)ka}

2(y -1 1 2 2
+ R S - HR |ViR|

2(y-2)
ViR-V;S — ;RH |ViR|?

Vo B y—=2
= EVkR-VkH+ R

2-nNr-1) 1 R2 2
+—72—Y_+T—_ S_HR Vi R|

2(y — 1)? . 2
+ —W S - HR |ka| .
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Since
1
R?

by Lemma 5.8 we get

2
ViR - VkS— &7 ViR RV R;; < leijl'[Vle‘IkaijL

2(n — )(n +2)

2
<
leRI = 3In —

IVkRulz

Thus

2(n - D(n+2)\'"?
|ViR| - |[ViR;j| < (—('3”)—_(2—)> |VkRij|2-

From (6) it follows that |R,-,-|2 < R?; thus
1 ci(n)

ﬁka VS < — [lel |Vle |VkR1]| < Ri- 1|V R]k]Z
where ¢; > 0 depends only on 7.
Using (27) we get
_ 1 y 2—-y)
—2V,R!77.V, (S - ;RZ) < ﬁka Vi H + (}Ty_%‘-w,»RjkP

2 2
+ = RV+1 (S— —R ) IViR|?,
=y(r-1D.
From (26) it follows that

OH (2-7y)c
5 <AH+RVkR V.H + R—l|v,<R,-k|2
2(n —2)?

2 2 1- R.,I2
+ = RV“ (S— —R ) [V R|" = mR V|V,R]k|

+ 4R (S - %RZ) _r= D) (S - —’1;R2> ViR

R7+l

21-7) 2
+TS(S—;R .

By (6) we have
2(1 _Y)S(S_ %RZ) S2|7— ll'Rz_y (S— %RZ) ,

RY
and therefore
oH 2(” _ 2)2 [—y 2
_ Sk A R
a7 < AH + RVkR ViH + [(2 y)Ci n(3n = 2) RV iR

+ 6R%~? (S - %RZ) ;
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If we choose 1 < y < 2 such that
(28) 0<2-9< -

then

2(n - 2)? (n—2)?
Thus
oOH

Y
— < LV.R-V,.H—
at_AH+Rk k

+ 6R%*Y (S - %RZ) )

(n—2)°

(29) n(3n —-2)

We still have

O gi-7 = (3- y)RZ‘V% = (3-7)R*7(AR +25)

ot
=AR7 — (3-7)(2 - 7)R'7|ViR? +2(3 - y)SR*?,
FViR- ViR = (3= p)yR ViR,
%R3‘7 =AR7 + %ka ViR = 2(3 - )RV R}
+2(3-y)SR*7,
From (6) it follows that

%R3‘V > AR + IY_{V"R ViR —2(3 - y)R'7|V,RP?

30 9 X
+ (3= PR

Now we define
|ViR]?
R?
where @ > 0 and 7 > 0 are two constants to be defined later. Then by
(24), (29), and (30) we get
oF

Y ' b4
WgAF+ﬁka-ka—y(1—2)
(n—2)?

|
32 A S -1 7.R., 2 R2-V _ 1 2)
(32) +[16 n(3n_2)a]R |ViRjk|” + 6 (S nR

(31) F(x,t) = + R (S - %RZ) —qR¥*7, 0<1<+o0,

|V:R|*
RV

+27(3 - )R'7|ViR|* - %(3 — MR, 0<t< +oo.
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If we choose o such that

32n(3n-2)
(33) o> =27 °

then

(-2 _  (n-2p

16 — - <) S SN
(34) 8= B 2%S T
AF y 7y [ViR[*
5 5AF+EVkR-VkF—y(1 —5) e
. (n - 2)2(1 1—y R .. I2 _ 1—y 2
(35) 2 =g R ViRl +20(3 = )RV VR

+ 6aR*™Y (S - %R2> - %(3 —yMR*?, 0<t < oo

By definition we have

|ViR|? 3 - 12
7~ = F +1R7 —aR'7 (S~ —R*),
|V,’R|4 F2 3—y 1—y 1 2 2
- 2 5~ |1k —aR'7 (S~ R
2
> L 2n2R6% — 242R*Y (S - 1R2) .
2 n
Thus
Y 7\ ViR Y y\ F? P\ 2 e
~5(1-%) T <3 (-3) g +r(1-3) PR
2
+7( —%) a?R™Y (S—1R2)
(36) ? N F2 oy ’
_r L L0 2 p4—y
< 4(1 5) o= T 32— MR
Yy 2 p2—y _l 2
+5(2-7)’R (S nR).
Using Lemma 5.8 we get
— )2 _9\2
(37)  —A2= D@ Ry R <~ =D pioyy,Rp,

“2n(3n-=2) “an(n-1)(n+2)
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Substituting (36) and (37) into (35) yields

a;<AF+RVkR VkF—E(l—Z)g_fzﬂ_“~%(l_z) F?

2
(n—2)%a _
" [2’1(3 Y= 4n(n — 1)(n + 2)] RIZ|ViR[

+ [6a+ 22~ o’ R (s - %R2)

(38)

+ [%(2 -t - %(3 - y)n} R47, 0<t< +o0.

Choose n > 0 small enough such that

(n-2)2a (3-7) }
16(3—y)n(n—1)(n+2) ny2-y) 4"

(39) O<n§min{

Then

(n-2)% (n—2’a
2B =N~ G =D+ S D)

2 1 1
_ 2 Z(3— < (3 — <
72— n(3 n < n(3 ?n < -

Thus from (38) it follows that

oF % ¥y [ViR*
W<AF+RV,(R ) 5(1—5) 2o
V(N (=% o pp
(40) 3 (1 2) R 8n(n—-1)(n+ 2)R ViR

+ [6a + (2 — P)a?]R*™Y (S - %R2> - %nR“‘V,

0<t<oo.

By the definition of F, we have

|ViR|? [V.R]* o 12 2 1— 2
1132 F = R12+7 +R7+1 S——-R |IVeRI* —nR Y|V R|,
V.R|* V.R|?
- |Rl2+r| s - Iltzl F+ Rr+1 (S_ —Rz) IViRI?
pI2
< JV;:;' F +aR'™7|VR],

Y ANALZ IViR2 . 7,y 1=y 2
_5(1_5) RIS 2(1_5) gz F 3@ V)aRTIIVRI
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Substituting the last equation into (40) gives
(41)

OF |V:R|? ¥ »\ F?
—_— < - L _ £ — L Ly
a1 AF*LRV"R ViF =5 at 2) R 4 (1 2)R2—7
+ [—(2—y)- (n—2)* ]aR“VIV RJ?
4 8n(n — 1)(n +2) k

+[6a + (2 — y)e?|R*? (S - %RZ) - ;lz—nR“‘V.

Let
(n—2)?
02V S G- D+

Then

Y 3 (n—2)? <_ (n—2)?

2 G DD S T Tenn = D<)

2
%F SAF + 29 R ViF - 202 )'V R g
F2 ( 2) 1-y 2
(42) - §(2 R = 16n(n— 1)(n + 2)R ViR
+[6a+ (2 — p)a?]R>? (S - %R2> - %n.R“‘Y.

Since

R'"7|ViR]? = RF — aR*™? (S - %R2) +yRY7,

from (42) we get

oF ViR .y F?
57 SAF+ % ka ka——(z N F-3C -V
(n—2) 2 p2—y __1 2
(43) Ton(n D+ 2)RF—+- 8a“R S nR
(n~2)?

anR*~?, 0<t < +o0.

~16n(n — 1)(n + 2)

Lemma 6.2. Suppose m >0, C >0and p(x) =x+C/x", 0 < x <
+o00. Then

o(x) > (1 + i) ml/mED im0 < x < +oo.
m
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Proof. Let ¢’(x)=0. Then ¢'(x) = 1-mC/x™*! = 0, and the solution
is xo = [mC]Y/0m+1) We get

o200 15 = (145

20
1

p(x) > (1 + %> mt/m+hcl/m+l) 0« x < +o0.

Thus

¥ F? (n-2)a
82" N%= T Gt - Din2)
_ (n=2)%F 2n(n—1)(n+2) 1
B 16n(n—1)(n+2)[ (n—=2)%a (Z‘Y)F'F]

(n—2)%aF 1 _ /G- . F1/G-1)
Gnmn—Dn+2) ' T2=5) 7 F

RF

v

?(2-7)

. [Zn(n - 1)(n+2)
(n—-2)a
_ (n=2223-y) [2n(n—-1)(n+2) 1/(3—7)
T lén(n—1)(n+2) (n—2)2
X };1/(3—?)(2 - y)(}’—1)/(3—)’)a(Z—?)/(3“)’)F(4—y)/(3—y)'

:| 1/(3—r)

Substituting this into (43) yields, for F > 0,

CRI2
% < AF + %ka Vi F - %(2 —) |V;£| F
(n=223-9) [2n(n-1)n+2) ]/C7
T 16n(n—1)(n+2) [ (n—2)2
(44) X (2 — 3)=DIB=D)g2=1/G=1 Fé=D/G-D)

1 n—2)>2
+ PR (S - ZRZ) - 16n(r(z - 1)()n TR
0<t< +o0.

From Lemma 6.1 we know that for 0 < o < 1/(2n)

> 2 < ﬁcl(a) 2—0 <
RmP* < Z2E R 0<t< +oo.

b
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Thus
n?
(45) 0<S—- < Berla )Rz“’, 0<1t<+o0,
(t+1)°
_ 1 (n—2)2 _
2p2—y ¢ _ Lp2)_ d—y
8a’R (S nR ) 16n(n — 1)(n+2)a”R

1\’ (n—2)? o| pa—y—o
< [Sanzc‘(“)ﬂ (m) T Tenn—Dnr ™ ]R4 e

{128;1 (n—1)(n+2)a- Beci(o ](4—~/)/a 1(_1—)4—)/—6
(n—2)2n t+1
3(p — (4=y)/a—1
< 8n%ci(0) [128” (n (nl_)(2n)2+ 2)c ]
[64

(4=v)/o 4-y
()7 (k)
n t+1
Let 0 = 1/2n. Then

_ 1 (n —2)? .
2p2-y (o _ L p2) _ R4-7
8a’R (S 2R ) 16nin—-Dn+2) "

2n{4—y) 4—y
< a(n, co)an (9ﬂ£) (—1-> ,

(46)

t+1

where ¢ is the constant in (1).
Substituting (46) into (44), we get

6F {\7'R|2
(47) —c4(n)(2 — p)7—D/B=N) a(Z—?)/(3—7)F(4—y)/(3—y)
2n(4—y) 4—}
af 1
el —_— < .
+C3(n,cO)an<n) <t+l) , 0<t< +oo

(48) w(x,t) = F(x,)}~?,  0<t< +oo.
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Then
Sw |ViR|?
57 <Aw + RVkR Viw — 4(2—})) R W
—c4(n)(2 = y)I DG R=7) B =7y (4=7)/(3=7) . (l)
t
2n(4—y) 4~y
aff 1 t (3—7)
+C3(n,Co)a'7(n> <t+1) + W,
dw y IV R|2
—3—t<Aw+RVkR ka—z(2 )
2n<4—y)
c(n, ¢
+Y [(3 -9+ 2oy (22)
(49) 1

—c4(n)(2 — p) P N/B=12=0)/B =)y 1/(3—y)]

forw > 0.
From (48) it follows that

(50) w(x,0) =
and therefore, in consequence of Theorem 4.12, that
(51) w(x,t) <yo on M x [0,00),

where yy > 0 is the root of
c3(n, co) (aﬂ ) na=n)
3—-y)+ ——an|{—
(52) B3-7) et
—ca(n)(2 - y)(y—1)/(3—y)a(2—y)/(3~y)yé/(3—V) =0.
Now if we fix y such that (28) holds and let

a=(1/B)7, n=p'"" y=pe"

c3(n, co) (aﬂ)ZnM—y)
I+ " —_—
(3-» A

—ca(n)(2 - y)(y—1)/(3—y)a(Z—y)/(3—7)y11/(3—?)
= (3- ) + &3, o) D323/
1\ @=0/123-7)
—¢s(n,y) (F)
If § > 0 is small enough, we have
Yo < yy = pENA

then

< 0.
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Thus there exists a constant ¢g = ¢cg(#, ¢g, ¥) > 0 such that

(53) w(x,t) < pEI* if0< B <cs.
By the definition of w(x,?) we get

(54) F(x,t) < p@=08 837 0<t<+oo.
Also by definition we have

(55) F(x,t) > ‘VI";fP ~ R,

Combining (54) and (55) gives

[ViR|?
R

3—y
< ﬂR3_7 + ﬂ(z—)')/4 (.;_) , 0<t< 0.

Since n = B1/3, we have

3—y
(56)  |ViRP < USRS 4 BO-DHRY G) <1< 4o

Lemma 6.3. Suppose M is a complete noncompact Riemannian mani-
Jold of dimension n, and suppose there exists 6 > 0 such that

R;j>6Rgij >0 on M.

Then there exists a constant 1y = no(n,d8) > 0 such that

3
(57) o [sup R(x)] < sup|V.R|*.
xeM M

Proof. The proof of this lemma is analogous to that of Lemma 5.17.

Now we can prove the following scalar.curvature decay theorem.

Theorem 6.4. There exist constants 8 = 8(n) > 0 depending only on n,
and cg = cg(n, ¢y) > 0 depending only on n and ¢y, such that if 0 < B < ¢,
then

(58) R(x,t) < C(n)p%/t, 0<t<+oo,
where C(n) > 0 depends only on n.
Proof. Let
(59) Ryax(t) = sup R(x,1t), 0<t< +o0.
XEM

Since from (3) we have

0<S— %RZ = |1c?t,-,-|2 < nZ|1°2m|2 <n’BR?’ 0<t<oo,



RICCI DEFORMATION ON RIEMANNIAN MANIFOLDS 369

we can find & > 0 depending only on 7 such that if 0 < § < & then

(60) R[j > Z—In—Rg,-j, 0<t<+oo.

By Lemma 6.3 we can find a constant 7y = #9(n) > 0 such that
Mo Rmax < SUP|ViR|%.
M
From (56), if we fix y = y(n) > 0 and let ¢ = cs(n,co) < &, then for
0 < B < ¢, we have

1\’
S}l.llp IV,Rlz S BI/SR?naX + ﬂ(Z—y)/4 (?) Rg'na)p 0 S < +00,

and therefore

1\*7?
NoR3 a0 < B'PR . + BN (7) Rl 0<t< +o0.

If 0 < B < min{cg, (110/2)3}, then
— g3 Mo
o= B 25,

M0 p3 s (1N oy
2 Rmax S ﬂ ? Rmax, 0 S < —+00.

Thus if 0 < B < min{cg, (0/2)3}, then
2

1/(3=y)
Rpax(t) < (’7_) ﬂ(Z—y)/4(3—y)/t, 0<t< .
0

Let C(n) = (2/n0)"/3-7 and 6 = (2 —7)/4(3 —y) > 0. Then
(61) R(x,t) <C(m)B°Jt, 0<t<+o0.

Corollary 6.5. For 6 > 0 and ¢ > 0 in Theorem 6.4, there exists a
constant ¢; = ¢7(n, co, B) > 0 such that for 0 < B < cg, we have

C 0 , Cos
(62) R(x,t) < t(z_)'f + c7((tn+c(1,)f), 0<t<+oo,
(63) ]V[R|2 < C(”)ﬂw ¢1(n, co, B) 0< 1< +oo,

T+ 1) (t+1)4 7

where C(n) > 0 and C(n) > 0 depend only on n.

Proof. (62) follows from Theorem 6.4 and (3), and (63) follows from
(56) and (62).

Thus we know that as time ¢ — oo, the scalar curvature R(x,¢) goes
to zero in ¢~! order, but this is not enough; we need faster decay of the
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scalar curvature than 7~} to guarantee the convergence of the metric g;;(f)
as time ¢t — oo.

7. Decay of the controlling function

In this section we want to prove that the scalar curvature of M actually
decays in the order of (1/£)'*%, 6 > 0, as time ¢t — +oo, provided that M
satisfies all of the conditions stated in the Main Theorem.

We still use the notation of the last section. Suppose M is an n-
dimensional complete noncompact Riemannian manifold with metric
gij(x), the curvature of which satisfies the condition

(1) RmP < BR>, O<R<c,

where f and ¢, are constants, and 0 < 8 < §,/2n(n — 1).
From Corollary 6.5 we know that if 0 < # < ¢, then

C(’l)ﬂé C7(n>C0> )B)

< < .
(2) R(x,t) < T 17 0<t<+o0
Let
(3) &= C(n)ﬂ5> C(S) = C7(n>C0’)B)'
Then

£ c(e)
< < .

4) R0 0 < g+ o5 0t < oo
Suppose u(x) € C*®(M) is a function satisfying

(5) 0 < R(x,0) <u(x) <2R(x,0) on M.

We consider the following equation on A

ou _ 1y e Ce) 1,_ 1L,
8t_Au+(2+\/E) [t+1+(t+1)2}u “

(6) 0 << +oo,
u(x,0) = u(x).

From (5) we get

(7) 0 < R(x,0) < u(x,0) < 2R(x,0) < 2¢p.

Therefore by using some simple technique we can find a positive solution
u(x,t) € C*®(M x [0,+00)) of (6) such that

(8) 0<u(x,t)<c, 0<t< 400,

where 0 < ¢; < +o0o is some constant.
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Since OR/0t = AR + 28, from (6) of §6 we have

OR
(9) 37
which together with (6) implies

< AR + 2R?, 0<t< +oo,

Bt(u_ )>A(u—R)+[2R~—l—u} (u—R)

NG
(2 7) e oAl

e Cle)
t+1  (t+1)?
Since u(x,t) > 0, we have

(2+\1f) [til*'(—cr(gr))—z—R]uZO,

which thus reduce (10) to

(10)

From (4) we get

- R>0.

(11) gt(u R)>A(u—R)+(2R—%) (4~ R).
Let w(x,?) =u—~ R. Then

(12) W > Ay + 0w,z 0,

where

O(w, x,t) = <2R - %) (u—R).

Furthermore, from (7) we have

(13) w(x,0) > 0.
Since u(x,t) > 0, we get
(14) wx,t)>-R>-C, 0<t<+oo.

By using (4)and (8) we get

Q. ol< (2R+ ) - Ri< (20 + ),
C1

IQ(V/,xt)l<(C )lu/l, 0< < +oo,

‘*%l

(15) Q(w,x,z>z—(zé+ )w/; 0< 1< too.

SI

371
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From (12), (13), (14), (15) and Theorem 4.6 it follows that
w(x,t)>0, 0<t<+oo,

so that
(16) R(x,t) <ulx,t), 0<t < +oo.
Let
1 & C(e

an P(t)=(2+%) [m+(t—|-(l))2 , 0<t< +oo.
Then
(18) a—”:Au+P(z)u—iu2, 0 <t < +oo.

ot NG
Let ’
(19) ¢<r)=t-%+(—t{—'m, 0< i< +oo,
where ¢ > 0 and ¢, > 0 are two constants to be determined later. If we let

'UJ(.X, t) = u(x> t) - ¢(t)’
then we have

%_‘:’ = Aw + P(t)[w + p(1)] — %lw +o(O)F - 9'(1),
Sw 1 2
0 Br =AW+ [P0~ —mw - ﬁw(t)] w+ P(t)p(?)
_ ‘/’\(/’E)z — '),  0<t< oo,
From (19) we have
pn O -2¢
O iy
2(,‘1

POPO = (0= 7+ Ty iy

i ( 16) [l+l (zc.;.(el))z] [tf-l + (t—ill)Z]
(o) e (o) 5
[( ) (ec1 +6C(e)) + 201] (7;1_1_)_3

0<t< o0,
__1_ (t)2 . _1_ 62 " 26(}1 1 + ﬁi 1
\/5(/’ TVE(@+1)2 T e (1413 e (t+ DY
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Let § = 4/c. If ¢, is large enough, then

2

<2+—1-)s§+§< 75

Ve

1 256’1
(2 + 7) fec; +6C(&)] +2¢ < \/E ,
1 c?
(2 + 7_) C(8)C1 \/E
Thus
P()p(t)—¢'(1) < fco(t 0<t<oo,
1) P(9(t) — —p(t7 —9'() <0,  0< 1< +o0.

VE
Substituting (21) into (20) yields

(22) O  Aw+ |P(t) - %

ot
4\/_ C1
1T

2
- = <
w \/Ego(t)] w, 0< ¢t < +o0,

0<t < +oo.

(23) (1) =
By definition of w(x, ) we have

'lU(X,O) = u(x, 0) - (0(0),
u(x,0) £ 2R(x,0) < 2¢y,
(0(0) = 4\/E + <,

and therefore
w(x,0) < 2c0—4/e—cy.
If we choose ¢; > 2¢g, then
(24) w(x,0) <0, xeM.
From (8) and (23) it follows that there exists a constant ¢; > 0 such that

0< u('x’ t) < ¢,

25
(25) 0<p(t) <cy, 0<t< +oo,
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so that
(26) —c < w(x,t) < e, 0<t< 400,
(27) [P(t) - Vl_gw - _\/Z—EWI)] w < c3|w), 0<t< +o0.

By means of (22), (24), (26), (27) and Theorem 4.6 we get

w(x,t) <0, 0<t< +oo,
(28) u(x,t) < p(t), 0<t <+,

and finally the following:

4\/E+-—Cl?, 0<t< 4.

< X
ux,t) < t+1  (t+1

Thus we have proved the following lemma.

Lemma 7.1. Suppose u(x,t) € C®°(M x[0, +00)) is the solution of equa-
tion (6). Then

4\/5 C1
Ve <
(29) O<R(x,t)§u(x,t)§t+1+(t+1)2, 0<t< +oo,

where ¢, = ¢\(&, o) > 0 depends only on ¢ and cy.

Since

6—u=Au+P(t)u—%u2, 0<t<+oo,

we have

Ou; _ (Ou\ _ __1_2
W_(W)i_[Au—}_P(t)u \/Eu]i

2
= Upgi + P(t)u; — W

2
= Uikk — Rigt + P(D)u; — —ﬁuui,
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where u; = V,u is the covariant derivative,
ou; 2
(30) Fi = Au; — Ryuy + P(t)u; — —=uu,, 0<t< +00,

NG
-a—tIV,-uIZ = AIV,-uIZ - 2]u,-j|2 + 2R,~ju,~uj — 2R uuy

. 4
+2P(0)|V,ul? - ﬁulviulz,

d
=1Vl = AVl = 2u + 2P0 Vil
(31)

4
- %ulviulz, 0<t< +oo,
o (1Y _ y ou - _ _1_ 5
E (7) = u}’+l 6t u}’+l [Au +P(t)u \/Eu ]
g [1 1 +1 Pt
i (i) =2 () - L w122
(32)

+_y_ 1=y, 0<t < +oo.

S

From (31) and (32) we get

0 (IS8 _y (1242 g, (1) o

+—%u""lv,~ulz [ZP(t) \/Eu] [Vl

u’

2 y+1 yP(t
- Wluijl2 - ______y(um )lViu|4 - ———uS )IV,-ulz.

Let w(x,?) = |Vu|?>/u’. Then

20 —aw =29, () eIV = S - LD 9
(33) 4 »
+ [2P(t) - ﬁu — yP(t) + %u] w.
Since

1 4
-2V, ( ) Vi lViul* = ,z, UilhicUigc,

2uuy
= Tflviulzuk,

wy, =V, w=
k k W u

2
|Viul?,

2y ?
e itk M = U Wi + uy+2

u}‘+l

375
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from (33) we have, for 0 <t < +oo,

ow _ 4 AN A
aay O = dw+ 5V =y (1-5)
- ﬁluij - Euiujl + [(2—}')P(I) + \/E u} w.

Now let 0 < y < 2. Then

Y
(35) y(l—§)>0, y—4<0.
From Lemma 7.1 we know that

2 r=2
S-S eien[ewiy]

|2-nPw + L2 w < - np(w
Substituting (17) and the above equations into (34) yields
ow

Y
W<Aw+ Vku Viw ~ 2(1—

2
3) w=

p—-2
_2(2 ?) [4\/’+m] (t+ 1" 7w?

+(2_7)(2+%>[tj1+z—€£%5]w, 0Lt < +oo,
ow

Y < Aw+ gvku-vkw (2 )

at
C3(}’, )
(t+1)

IVkul

(36)

~ ey, )t + 1) Tw? + w, 0<t<+oo.

|V iul?
u?

Fx,t)=w(x,t)- t= t 0<t<+oo.

Then from (36) we have

?TF <AF +% Vku V. F — Z(2 — )'VI’;;"
—ca(y, &)t + 1)* F —+ i;(_};’l))F+ g
%_F <AF+Z Vku ViF - %(2— )‘VS;‘(Z
(37) + g [1 +c3(7,€) <t+L1) — oy, e)(t+ 1)2‘7F] ,

0<t < +o0.
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By the definition of F we know that

(38) F(x,0)=0,

which together with (37) and Theorem 4.12 implies
F(x,t) <ca(y,¢), 0<t< +o0.

Thus if 0 < y < 2, then we have

[Viul? _ car,¢)

(39) o g Wb,

0<t< +o0.

Let

Viul?
H(x,t) =w(x, )37 = %t“y, 0<t < +o0.

Then from (36) it follows that, for 0 < ¢ < +o0,

OH |Vku|2
—— < L
BT, AH + = Vku ViH - 4(2 ?) y H
— ey, )t + 1) 7H? ! y+c3(y’8)H+ 'y
’ t (t+1) t
OH IVku|2
) WAH+ Vku V.H - 4(2 ) 2 H
t r+ 1\
— |(3=7)+c3(y,¢) (m>—6‘2(?,8) (T) H},

which together with Theorem. 4.12 yields
H(x,t) <cs(y,€), 0<¥t< +o00.
Thus if 0 < y < 2, then

|V iul?

(41) s

1\*7
< es(ys¢€) (;) s 0<t< +oo.
Lemma 7.2. Forany 0 < y < 2, there exists a constant ¢ > 0 depending
only on y and ¢ such that

|V ul? 1 \*?
Proof. (42) follows from (39) and (41).
Now we prove the Harnack Inequality for the controlling function u(x, ¢).
We know that
ou
at

=Au+P(t)u— —u®, 0<t<+oo.

1
7
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Let f(x,t) =logu(x,t). Then

(43) af =Af+|Vif]? + P(t) - \;Eu’ 0<t< 400,
ij 6g ij o
aAf-————(g ViVif)= 57 ViVif+g atVV,f
(44) 5
=2Rijfij+ & ’atV iVif.
Since : iy of
_ k
Vivif= dxigxi “Haxk’
we have
a af ar{;
ar k
g’ag-VV,f A(af) g1
We have proved the following formula in §4:
61"" m
(45) _5t_ = g (VmRij = ViRjm — VjRim),
which together with the Bianchi identity implies
31""
(46) - =0Q forany k.
Therefore » of
YotV Vif=a ( at)

Substituting this into (44), we have

a 3f

=2R;;fij +A [Af+ IV.if!2 +P(t) - \/LE“]
= AQAS) +2Vif - VHAS) +2fF + 2R i
- %Au + 2Rijf;'j;

the last step comes from
AVif? = (30 57),, = @hifik = 205 + 2fifiw
= 2f% + 2furifi + 2R Si o,
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where we have used the formula

(47) Sk = Seki + Rikc fre-
Thus we get
(Af) AAS)+2Vif -Vi(Af) + 2f3 + 2Ry fi;
(48)
+2R;iififi — %Au, 0<t< +oo.
Since
. _ Au IV,'MIZ
(49) af=Atogu =22 Vi
we have

Au = uAf +ulV; f|?,
and therefore (48) becomes

g—t(Af) =AAS) +2Vif  ViAS) +2f5 + 2R fij

(50) 1 1 )
+ ZRUf;f_} - %uAf - —\/—.-a_uIV,fI .

From (60) of §6 it follows that R;; > 0, so that

(51) 2Riifif; 20, 0<t <400,

[2Ri; fijl <R + fi =S+ f2
Since 1R? < S < R?, from Lemma 7.1 we know that R <u, S < R® <u?,
and

(52) |2Rijfij| < W+ fli, 0<t < +oo.
Combining (50), (51), and (52) gives

(53) o(Af) 2 AR+ 2V, Vi(Af)+ ff ~ 18 = —ubf ~ —ulV, P

Ve Ve

On the other hand, we have
(s4 £z~ (qu) - 1<Af>2,
(55) - uAf| AN+
Substltutmg (54) and (55) into (53) ylelds
20N 2 MAN 2V VIAN + 315+ 1 (A

(1+ )u—TuIVfl 0<t < +oo.

(56)
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From Lemma 7.2 we know that

Vil cee) ( 1 )
< f£12 — | i < < )
(57) 0= ulV.i/fl 2 < \ix1 ) 0<t<+00

Substituting (57) in (56), and using Lemma 7.1 we get

8 1 1

- 5 (B1) 2 MBS +2V.f -Vilb) + 505+ (A1)
_cale) (L) 0<t<+00
t \t+1)° = ’

On the other hand, from (34) it follows that
8 (IViulP\ _ \ (IV: ul2 IV u|2)
FT, ( ) =A ) + - V u-Vy

u
2 1 2 2 lV,-ulz
= it — Uil - 7 ( )

Recalling that f = logu, we have

(59)

Io]
67Wif|2 = AV f* + 2V f - Vi Vif?

2f2—-\/—g(lv;“l ) 0< ¢ < +oo.

Suppose 0 < a < § is a constant. By (58) and (60) we get

- (60)

D (Af +alVi ) 2 AT +alVif1) + 29,] - Vi(Af + 0|V, P)

1 o N Loam 2o [Vl
() dyon ﬁ(u
: c(e) {1
BLTAT A B < .
; (t " 1) R 0<t<+oo
Since 0 < a < 4, we have 1 5 —2a > 0, and, in consequence of (61) and
Lemma 7.2,

E[Af"' a|Vif121 2 MAS + a|Vif121+ 2V, f Vi [AS + a| Vi f]

(62) + 1AL + &IV PP — [V fPIAS + 9T
—68—582(;—_*_1—1), 0<t< +oo.
Let

(63) F(x,t) =[Af +a|Vif]*lt, 0<t<+0c0.
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Then
oF

57 >AF + 2V, f- ka——|ka|2F+ L g

4nt

1 F
— —_— —_ < .
c8(£)(t+l>+t’ 0<t<+0

Finally we have

aaF > AF +2Vif ViF = 5|V fPF

. +£[I_CS(L)L+£].
t t+1) F 4n

By the definition of F we know that
(65) F(x,0)=0.
From (64), (65) and Theorem 4.12 it follows that
(66) F(x,t) > —cy(e), 0<t<+oo,
where cy(¢) is a constant independent of a. Thus
(67) Af +alVif2 2 —¢o(e)/t,  0<1<+oo,
for 0 < & < £, and letting a — 0 we get
(68) Af > —cq(e)/t, 0<t<+oo,
(69) A—uu - 'Vlji"z > —cq(€)/t, 0<t<+o0.

Lemma 7.3. There exists a constant co(e) > 0 such that
|V iul? _ _l_a_lf < c1o(€)

(70) 3 =~ ST 0<t < +00.
‘ Proof. Denote u, = 6u/8t. Then
U, =Au+ P(t)u — %u‘z,‘
S B b+ \—}_Eu <2y %u,
(71) Ei?ﬁ_z;’ < |Vu;4I2_A_uu_ —\}—gu, 05t<+ooj

The lemma now follows from Lemma 7.1 and (69).
Now we state the Harnack inequality for the controlling function w.
Lemma 74. Forany x,y € M and 0 < t; < t; < +o0, we have

u(x, 1) <u(y, ) (i—f)q exp [4—”(‘;—2(—_—%]
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where we use y,(x,y) to denote the distance between x and y with respect
to the metric g;(t).
Proof. Suppose y(S): [0,1] — M is a geodesic with respect to the met-
ric g;;(0) such that
S)=polx,y), 0<S<U,
?0) =y, »(1)=x

Define
p(s) = f(y(s),is+ (1 —5)), 0<s<1,

where f(x,t) = logu(x,t). Then we have
ﬂmn»4v¢»=mu—mm=[:¢mds
=AHV%ﬂv%-wa—nunm
sAMV%«W%%4Q4Mﬂw&

where V0 denotes the covariant derivative with respect to g;;(0).

(y9t2)
(x’tl) ? (y9tl)

Since
IVl =p0(x,¥), V1< IVifl,
1
(02 S - [ < [ [pnIvil- 6 -n)] ds,

from Lemma 7.3 it follows that

_UW 00 g2
(73) — < V. fI5,

so that

1
fit) = 0,12 < [ [ p)IVifl = (= )19 + L2 = 1) ds
' 206 y) | o
S/O [Z—(QZ"ZTI—I—)-"'T(Iz—t])] ds
7¢(x, ) “dt _ pi(x,y)

153
= = 4 = =" +cpplog=.
H—1) N, T T ML) TR
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Therefore we have

u(x, ) < u(y, 1) (%) exo { f(-gé—":%}

As soon as we prove the Harnack Inequality for the function u(x, t), we
can control u(x,t) better than we did in Lemma 7.1; of course we need
extra conditions on the initial data u(x,0). As a first step we prove the
following lemma.

Lemma 7.5. Under the assumptions of the Main Theorem stated in §1,
forany 0 < T < +o0, we can find a constant C(T') > 0 such that

C(T)
= [1 + yo(xo, x)]?*¢
Proof. In (7) we assumed
R(x,0) < u(x,0) < 2R(x,0),

and condition (B) in the Main Theorem implies that

0<u(x,t)< on M x [0, T).

G
[1 + yo(xp, x)J2+6°
Suppose {(x) € C§°(R) is the cut-off function defined in (102) of §4, and
let

_ Yo(X, ) Yo(Xo, )
v = /Mc (64\/k—0) {1+ 7o xo,y)]2+"// ( 64+/ko ) -

Then, similar to the proof of Lemma 4.2, we know that y(x) € C*°(M),
w(x) > 0, and we can find constants 3, &3, ¢s > O such that, for Vx € M,

(5]
<
T+ 700, E = ¥

(74) 0<u(x,0)<2R(x,0) <

&
< .
) & T 000,

, V0w (x)| S &w(x),  |VIViy(x)| < é&w(x).
Then, similar to the proof of Lemma 4.3, we can show that
Ay(x) <8(T)y(x), O0<Lit<T, xeM.

Now define .
o(x,t) = g—zefﬂ’y/(x) on M x[0,T]
3

Then from (74) we have
0 < u(x,0) < ¢(x,0),

%;ﬁ =Cp >Ap on M x[0,T].
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Thus we get
u(x,0) < ¢(x,0),
6—¢ >Ap on M x|[0,T]
(75) ot ~ e
| o(x, 1) < Eaaly &T on M x [0, T].

= [T+ 700x0, X
By (18) we have

Q‘ti<Au+P( u < Au+ G,

(76) o
il —C7t < —&t
57 (€75u) < Ae™u).
Define ~
w(x,t) = @(x,t) — e u(x,t).
Then from (75) and (76) it follows that
Sw

_— >
57 > Aw on M x[0,T],

w(x,0) >0 on M.
By using Lemmas 7.1 and 4.5 we know respectively that
) ’lU(x, t) > _u(x’ t) 2 —58 on M x [O’ T],
and that
w(x,t) >0 on M x[0,T],
so that
u(x,t) < e'o(x,t) < eTo(x,t) on M x[0,T].
Thus we get
&o(T)
: = [1 + yo(x0, x)]2+¢
from (75), and u(x t) > 0 from Lemma 7.1. Hence the proof of Lemma
7.5 is complete.

Lemma 7.6. Under the assumptions of the Main Theorem, suppose &, >
0 and u(x,0) satisfies

/ u(x, O)"/z—sl dvy < ¢; < +o0.
M

u(x,t) < on M x[0,T]

If the constant &€ > 0 in (29) is small enough, then we can find a constant
¢3 = ¢3(€1,¢8,¢3) > 0 such that

1+¢,/2
u(x,t) < ¢y (m) s 0<t<+oo.
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Proof. Suppose dv, is the volume element of the metric g;;(¢). Then

(17) dv, = /det(gi;())dx' ANdXEA--- Adx".
It is easy to show that
i)
(78) Ed'vt = —Rd’u,.
We have

9 nj2-e,
57 /M u(x,t) dv

(" _ nj2—¢,—190U% / nj2-e, 9
(2 81)/Mu ! 6tdv+ Mu Btdv

= ——/ u"t Rdv
M

1
e (5-) et s o ] o
2 _ n/2— 1—1
<(% 8‘)/M“ “~'[Au+ P(t)yu] dv

= (g — al) P(?) /M u"r=e gy

() (5] [
< (% - 81) P(1) /M w28 gy,

Because of Lemmas 7.2 and 7.5 we can integrate by parts on the whole
complete manifold M. Thus we get '

(79) S [ wr-egy < 2pgr) / /2o dy,
a1 Ju 2y

which implies

/ Wi=a gy < o) Jy Pyar / w22 gy
M, Mo

(80) / ur-a dy < czefol("/z)P(') a 0<t<+oo.
M,
Moreover, by definition we have
_ 1 € C(e)
P =2+ 7) [+ pam)

/OIP(t)dt= (2e + Ve)log(t + 1) + <2+ \/LE) C(e) [1 — HLI] )
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If ¢ is small enough, then
t
4 / P()dt < C(e) + nvelog(t + 1),
0

and, in consequence of (80),

(81) / w2 dy < cae)(t + 1)"E, 0< 1< +oo.
M,
For fixed ¢, we can find a point x € M such that
(82) 1 supu < u(x,t) <supu,
2 M, M,

where sup,;, = sup,ep u(y, 1).
Let T =2t and ¢ > 1. If y(x,y) < ¢, then from Lemma 7.4 we have
u(x,t) < csu(y, t). Thus we get

/ 2= gy 2/ u"/z“”(y, 7) dv.(y)
M,

ré(x.y)<t

> cs / u(xe, 12~ dvg(y)
yZ

3 (X 1)<t
> cautx, 0" [ dudly).
re(xp)<t
Let A = {y € M|y%(x,) < t}. Then, using (4),
(83) / w2 du > cou(x, t"/z"el‘/ dv,,

/dv, /—dv, /Rdv,
4

- [ |t i) 4

Therefore

R e T
s (om)on{-[ e 555 )

(85) [avz s [an, osi<ic

By condition (A) in the Main Theorem, we have

/ dvo =/ dvg(y) > Cy§ > C(t + 1)"/2.
A 2(x,p)<t
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Since we assume ¢ > 1,
(86) /A duy > C(t+1)"?,
which together with (85) implies
/A dv, > cg(t + 1) *(t + )%
Since 7 = 2¢,
/ dv, > co(t + 1)"27¢,
Substituting this into (83) ;ields

(87) / u"/2—8‘ dv > clO(t+ l)n/Z—au(x, t)nlz_s‘,

T

On the other hand, from (81) it follows that

/ u?=8 gy < cq(T + 1)"VE,

T

Using 7 = 2t we have

(88) :

/ uMrE dy < G4t + 1)MVE,

T

which together with (87) gives

crolt + D2 2y(x, )28 < &4(t + 1)VE,

[n/2—e&]" ' [n/2—e—n+/e]
u(x,t)scll( ) .

Moreover, from (82) we get

t+1

(n/2—e] " [n/2—e~nv/E)
sup u(x,?) < cp2 (——) , 0<1t < +oo,
XEM t+ 1

if ¢ > 0 is small enough, then

and therefore
1+€|/2
(89) u(x, t) < C(8|,8) <m) , 0<t < 4o,

which completes the proof of Lemma 7.6.
Now we state the main result of this section.
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Theorem 7.7. Under the same hypotheses as in the Main Theorem, if

we let
né

— >0,

8(2+4)

then there exists a constant c3 > 0 depending only on n,¢,4,c1, and ¢ such
that ife > 0 in condition (B) of the main theorem is small enough, we have

& =

1 1+¢&
< e < .
(90) R(x,t)_c;(H_l) , 0<t< +oo
Proof. By condition (B) of the Main Theorem, we have
%)
< = )
0< R(x,0) < 70, )57 VxeM
Thus
91) / R(x,0)"?228 dyy < € < +o00,
M
which together with (7) implies
(92) ‘/uﬁiwﬂﬂﬁmm§C<+m.
M

Moreover, by Corollary 6.5 there exists a fixed n > 0 such that
C(n)e?
(mer | C(n,e)

< < )
(93) R(x,t) < T 1 Tk 0<r<+®
From Lemma 7.1 it follows that
/2 F
(94)  0<u(x,f) < 2VCe ! 0<t < +o.

t+1 (t+1)¥’

Now, if ¢ > 0 is small enough, by (92), (94) and Lemma 7.6 we know
that

1+¢
< _— < .
(95) u(x,t) <c <t+1) , 0<t< 4+

Since from Lemma 7.1
0 < R(x,t) <u(x,?), 0<t< 4o,
we have

1+¢
(96) 0<R(x,t) <3 (FT) , 0<t< +oo,

which completes the proof of the theorem.
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8. Higher derivatives of the curvature tensor

In this section we are going to control the higher derivatives of the
curvature tensor R; ;.
Theorem 8.1. Under the same hypotheses as in the Main Theorem, if

we let

e _____n_d__>0
1= 82+0) "

then for any fixed n > 0 and any integer m > 0, there exist constants
cm{n) > 0 such that :

. 2+¢
(1) |VmRijkI|2 < eml(n) (m) ) n<t<+4oo.

Proof. From Theorem 7.7 and Corollary 5.8 we know respectively that

1 I+¢
0<R$C(t+—1> s 0<t<+o00,

and that
Rm|> <eR?, 0<t<+oo.
Thus

o 2 2
2—_— 2 —— 2< R 2
|Rm]| |Rm| +n(n—1)R '(£+n(n—1)>R’

and therefore

5 2 l 2+2¢
|Rm]| SC(8+n(n7—1))(t+l) , 05t<+o9,

. . 1 2+
(2) |R;jxil* < <o (t—-i-_l) , 0<t< +00.

Hence in the case m = 0 the theorem is true. Now we prove the theorem
by induction. Suppose we already have the following:

1 2+81
(3) IVSR;ju* < Cs(n) (m) , n<t<+oo,

fors=0,1,2,---,m.
Now suppose s = m + 1. From Lemma 3.2 we have

7]
EIV"’RUMIZ = AV R;jul* = 2|V Rijuf?
+ Y VRmxV/Rm* V"Rm.

i+j=m
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Let a = 2 + ¢; and let a be a constant to be determined later. Then
0
a7la+ 1+ 12V Rijuf?]
= Ala + (t + D)%V Ryjua "] = 2( + 12|V Ry |

4 . .
@ +(t+1)* Y VRm* V/Rm+ V"Rm
i+j=m
+alt+ l)a—llvainlz.
Let

o(x,1) = a+(t+ 1)°|V" R;ul*.
Using the induction hypothesis

1 a
IVmRuk1|2 < Cn(n) (t T l) s n<t<+oo,

we have
(5) - apx,)<a+Cn(n), n<t<+oo,

]

52 = Ap = 2(t+ 12|V Rl + alt + 1)°7 [V Ry
6
(©) +(+1)* 3 V'RmxV/Rm*V™Rm,

i+j=m
- aC
a(t+ 1) lleR,jkIIZ =71 :(ln)) n<t<+oo,

a3 v J mRm < C | —— < )
(t+1) i+j=mVRm*V Rmx*V Rm_C(H_l) , n<t<+oo

Thus from (6) we get

8
(N 2L <Ap 20+ 1)V HR P+ ——, 7 <1< +oo,

C
9t (e+1y

where 0 < C < +oo is some constant. From Lemma 3.2 it follows that
b]
atlvm+1szk1[2 = Alvm+1Ruk1|2 2|Vm+2Rz kll
(8
®) + Y. VRmx*V/Rm* V™'Rm.

i+j=m+1
Using the induction hypothesis (3) again we have

a/2
Z VRm« V/Rm* V" Rm < C (ti 1) (VR

i+j=m+1

1 3a/2
+C(t+_l) , n<t<+oo.
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Substituting this into (8) yields

1s]
é—tlvm+1Rijkl|2 S AV Rjl? = 2[VHER

1\ , | 32
m+1
+C<t+1) IV szkll +C(t+1> s

n<t<+oo,
0
571+ DV Ry P < AL+ DAV R ]
= 2(t+ V"R
+ C(t + 1)a/z|vm+lRijk1|2

1 a2 )
+C<t+ 1) +a(t+ I)Q_llvm+lRijk]|2.

Let y(x,¢) = (£ + 1)*|V™!R;;|?. Then

E
a"t’ < Ay = 2(t + DV 2R P + C(t+ 1) V™ R 2
1 af2
9) +C(:+1) ., n<t<+oo,
Y A

C 1
m+2 2 _
Y < Ay =20 DP9 R+ e ()
n<it<+oo.
Now define F(x,?) = ¢(x,f)w(x,t). Then
(10) F(x,8) = (t+ DV Ryi’la + (£ + DV Ryjual*)-

Combining (6) and (9) gives

oF
S SAF =2V,0 - Voy =20+ 1)V Ryju[*
C m+2p. |2 _.__.C
(11) U+)W 2(t+ 1)%p|V '&M!+U+U¢W
1 af2
+C(t+1) . n<t<+oo.
Using (5) we have
¢ __¢ <£- F <t<+
t+1)7 T (t+ D" T a (t+ ‘
CE A Al (R L
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From (11) and the definitions of ¢(x,¢) and w(x,t) we get

oF
S SAF —2V,0 - Vop = 2t + 19" Ryl
C(a,n)
_ « m+2p. . |2 F
(12) 2(t+ 1) ¢|V Rtjkll + (t+ 1)

af2
+C(an)(Hl_l)/, n<t<+oo,
—29,0 - Vpp = =2[(t + D)*V, V" Ry Pl + 1)2V, [V Ry
= —2(t + 12V, |V Ry | - V[ V™ Ryju P
= —8(¢ + 1)*V”Rm * V""" 'Rm * V"' Rm * V”*’Rm
< (t+ 1DV R,
+ 16(2 + 1)**|V™ Ry jxt|*[ V" 2 Ry |-
Using the induction hypothesis (3) we have
(t+ D%V R P < Cmlm), M <t < +o0.
Thus
—2V,0 - Vpu < (t+ 12V Rl
+ 16Cu(n)(t + 1)* V™ 2Rl2, <t < +oo.
Substituting this into (12) yields

OF < AF — (¢ + 12|V R, jul* + 16Cm(n)(t + 1)V 2R, 2

ot
C(a,n)

_ a m+2p 12
2(t+ 1) q’lv lekll + (t+1)

F

1 0/2
<
rCan () - nsi<an,

OF
—— <AF — 2 +[16Cr(n) — 201(t + 1)V 2R, 4

at
C(a,n) 1
Trnl tc@n (t+l

But a £ ¢ < a + Cy(n); if we choose a > 8C,,(n), then

af2
+ ) , n<t<+oo.

16C,,(n) — 20 <0, n<t<+oo,

oF F? C(a,n)
OF < AF —
ot A T Ere.mET ae Dt

(13) L \e2
+C(a")(t+1) R n<t<+oo.
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Obviously we can choose # such that 0 < # < 1T;, where Ty is the constant
in Corollary 5.18. From Corollary 5.18 it follows that

(14) Fx,m)<C(n) VxeM.
Furthermore, from (13), (14) and Theorem 4.12 we have
F(x,)<C(n), n<t<+oo,
[a+ (4 1)V R PAt + 12V Ry P < C(n), <t < +oo.
Thus

-+ 09 Ry < S8 < h < oo,
Since a = 2 + ¢;, we get
1 2+5|
(15) [V 1R jki? < Crnat (1) <t+—1) , n <t < +oo.

Hence the theorem is also true in the case s = m + 1.
Proof of the Main Theorem. By the evolution equation

é]
5780 = ~2Ri)

R;; > 0 for all time 0 < ¢ < +o0, and

0<Rij<Rg[j, 0<t < +o0;

therefore
(16) 0> %g,-j>~2Rg,~j, 0<t < +o0,
17)  gij(x,0) > 8106, 1) 2 gij(x, 00e 2 RE04 0 < < oo,
] J J

From Theorem 7.7 we have

1 1+¢,
0<R(X,t)§C(m) , 0<t<+o0, g >0,

which implies

(18) 0</0°°R(x,t)dtsé<+oo.

Therefore combining (16), (17) and (18) yields
8/(x,0) > gij(x,1) 2 €€ g;;(x,0),

(19 gy <0,  0<1< o
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Thus there exists a metric g;j(x, c0) > 0 such that

]
(20) g0, 0) S gij(x,00) st — oo

Since the curvature tensor actually is the second derivative of the metric,
from Theorem 8.1 we know that

(21) Rijkz(x,OO)EO, xeM.
Therefore we still have
(22) €)' S gij(c0) as time ¢ — +oo,

and hence we complete the proof of the Main Theorem.
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